Given a digit string, return all possible letter combinations that the number could represent.
A mapping of digit to letters (just like on the telephone buttons) is given below.
Input:Digit string "23" Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
Note:
Although the above answer is in lexicographical order, your answer could be in any order you want.
给一串数字,按电话键盘上数字可代表的字母,求出所有可能的组合。
和subset, combination问题类似的DFS+backtracking。先要用HashMap或者数组建立一个从数字到字母的转换表,然后每一层递归遍历当前digits[i]所对应的所有字母,并加入当前combination中传到下一层递归。也可以用迭代。还可以BFS。
Java: Recursion, Time: O(3^n), Space: O(n)
public class Solution { private static final String[] keyboard = new String[]{ " ", "", "abc", "def", // ‘0‘,‘1‘,‘2‘,... "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz" }; public List<String> letterCombinations(String digits) { List<String> result = new ArrayList<>(); if (digits.isEmpty()) return result; dfs(digits, 0, "", result); return result; } private static void dfs(String digits, int cur, String path, List<String> result) { if (cur == digits.length()) { result.add(path); return; } final String str = keyboard[digits.charAt(cur) - ‘0‘]; for (char c : keyboard[digits.charAt(cur) - ‘0‘].toCharArray()) { dfs(digits, cur + 1, path + c, result); } } }
Java: Iteration, Time: O(3^n), Space: O(1)
public class Solution { private static final String[] keyboard = new String[]{ " ", "", "abc", "def", // ‘0‘,‘1‘,‘2‘,... "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz" }; public List<String> letterCombinations(String digits) { if (digits.isEmpty()) return new ArrayList<>(); List<String> result = new ArrayList<>(); result.add(""); for (char d : digits.toCharArray()) { final int n = result.size(); final int m = keyboard[d - ‘0‘].length(); // resize to n * m for (int i = 1; i < m; ++i) { for (int j = 0; j < n; ++j) { result.add(result.get(j)); } } for (int i = 0; i < result.size(); ++i) { result.set(i, result.get(i) + keyboard[d - ‘0‘].charAt(i/n)); } } return result; } }
Java: BFS,
public class Solution { public List<String> letterCombinations(String digits) { LinkedList<String> res = new LinkedList<>(); if (digits == null || digits.length() == 0) return res; String[] map = new String[] {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; res.add(""); for (int i = 0; i < digits.length(); i++) { int index = digits.charAt(i) - ‘0‘; while (res.peek().length() == i) { String t = res.remove(); for (char c : map[index].toCharArray()) { res.add(t + c); } } } return res; } }
Java: Recursion, HashMap, Time: O(3^n), Space: O(n)
public class Solution { public ArrayList<String> letterCombinations(String digits) { ArrayList<String> result = new ArrayList<String>(); if (digits == null || digits.equals("")) { return result; } Map<Character, char[]> map = new HashMap<Character, char[]>(); map.put(‘0‘, new char[] {}); map.put(‘1‘, new char[] {}); map.put(‘2‘, new char[] { ‘a‘, ‘b‘, ‘c‘ }); map.put(‘3‘, new char[] { ‘d‘, ‘e‘, ‘f‘ }); map.put(‘4‘, new char[] { ‘g‘, ‘h‘, ‘i‘ }); map.put(‘5‘, new char[] { ‘j‘, ‘k‘, ‘l‘ }); map.put(‘6‘, new char[] { ‘m‘, ‘n‘, ‘o‘ }); map.put(‘7‘, new char[] { ‘p‘, ‘q‘, ‘r‘, ‘s‘ }); map.put(‘8‘, new char[] { ‘t‘, ‘u‘, ‘v‘}); map.put(‘9‘, new char[] { ‘w‘, ‘x‘, ‘y‘, ‘z‘ }); StringBuilder sb = new StringBuilder(); helper(map, digits, sb, result); return result; } private void helper(Map<Character, char[]> map, String digits, StringBuilder sb, ArrayList<String> result) { if (sb.length() == digits.length()) { result.add(sb.toString()); return; } for (char c : map.get(digits.charAt(sb.length()))) { sb.append(c); helper(map, digits, sb, result); sb.deleteCharAt(sb.length() - 1); } } }
Java: Iteration, FIFO queue
public class Solution { private String[] mapping = new String[] {"0", "1", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; public List<String> letterCombinations(String digits) { LinkedList<String> ans = new LinkedList<String>(); if(digits.length()<1) return ans; ans.add(""); for(int i =0; i<digits.length();i++){ int x = digits.charAt(i) - ‘0‘; while(ans.peek().length()==i){ String t = ans.remove(); for(char s : mapping[x].toCharArray()) ans.add(t+s); } } return ans; } }
Python: Recursion
class Solution: def letterCombinations(self, digits): if not digits: return [] lookup, result = ["", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"], [] self.letterCombinationsRecu(result, digits, lookup, "", 0) return result def letterCombinationsRecu(self, result, digits, lookup, cur, n): if n == len(digits): result.append(cur) else: for choice in lookup[int(digits[n])]: self.letterCombinationsRecu(result, digits, lookup, cur + choice, n + 1)
Python: Iteration
class Solution: def letterCombinations(self, digits): if not digits: return [] lookup, result = ["", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"], [""] for digit in reversed(digits): choices = lookup[int(digit)] m, n = len(choices), len(result) result += [result[i % n] for i in xrange(n, m * n)] for i in xrange(m * n): result[i] = choices[i / n] + result[i] return result
C++: Recursion
class Solution { public: vector<string> letterCombinations(string digits) { vector<string> lettComb; string dict[] = {" ", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; string comb(digits.size(),‘\0‘); findLettComb(digits, 0, dict, comb, lettComb); return lettComb; } void findLettComb(string &digits, int index, string dict[], string &comb, vector<string> &lettComb) { if(index==digits.size()) { lettComb.push_back(comb); return; } string lett= dict[digits[index] - ‘0‘]; for(int i=0; i<lett.size(); i++) { comb[index] = lett[i]; findLettComb(digits, index+1, dict, comb, lettComb); } } };
C++:Iteration
class Solution { public: vector<string> letterCombinations(string digits) { vector<string> res; if (digits.empty()) return res; string dict[] = {"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; res.push_back(""); for (int i = 0; i < digits.size(); ++i) { int n = res.size(); string str = dict[digits[i] - ‘2‘]; for (int j = 0; j < n; ++j) { string tmp = res.front(); res.erase(res.begin()); for (int k = 0; k < str.size(); ++k) { res.push_back(tmp + str[k]); } } } return res; } };
类似的题目:
Path Sum II 二叉树路径之和II
Subsets II 子集合II
Permutations 全排列
Permutations II 全排列II
Combinations 组合项
Combination Sum 组合之和
Combination Sum II 组合之和II