Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1. The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
15. 3Sum 三数之和 的拓展,这题是让找到和目标数最接近的数字组合,还是用3Sum的方法,遍历每个数,对剩余数组进行双指针扫描,只是这次要设一个变量minDiff来记录最小差值的绝对值,如果当前三数的和与目标数相等,直接返回三数和。如果三数和与目标数的差的绝对值小于minDiff,则此组合更接近目标数,result变为此组合的和,迭代查找直到结束, 返回result。
Java:
public class Solution { /** * @param numbers: Give an array numbers of n integer * @param target : An integer * @return : return the sum of the three integers, the sum closest target. */ public int threeSumClosestV2(int[] numbers,int target) { if (numbers == null || numbers.length < 3) { return Integer.MAX_VALUE; } Arrays.sort(numbers); int length = numbers.length; int closest = Integer.MAX_VALUE / 2; for (int i = 0; i < length - 2; i++) { int pl = i + 1; int pr = length - 1; while (pl < pr) { int sum = numbers[i] + numbers[pl] + numbers[pr]; if (sum == target) { return sum; } else if (sum < target) { pl++; } else { pr--; } closest = Math.abs(sum - target) < Math.abs(closest - target) ? sum : closest; } } return closest; } }
Python:
class Solution(object): def threeSumClosest(self, nums, target): nums, result, min_diff, i = sorted(nums), float("inf"), float("inf"), 0 while i < len(nums) - 2: if i == 0 or nums[i] != nums[i - 1]: j, k = i + 1, len(nums) - 1 while j < k: diff = nums[i] + nums[j] + nums[k] - target if abs(diff) < min_diff: min_diff = abs(diff) result = nums[i] + nums[j] + nums[k] if diff < 0: j += 1 elif diff > 0: k -= 1 else: return target i += 1 return result
C++:
class Solution { public: int threeSumClosest(vector<int> &num, int target) { if(num.size()<3) return INT_MAX; sort(num.begin(),num.end()); int minDiff = INT_MAX; for(int i=0; i<num.size()-2; i++) { int left=i+1, right = num.size()-1; while(left<right) { int diff = num[i]+num[left]+num[right]-target; if(abs(diff)<abs(minDiff)) minDiff = diff; if(diff==0) break; else if(diff<0) left++; else right--; } } return target+minDiff; } };