码迷,mamicode.com
首页 > 其他好文 > 详细

CS231n笔记 Lecture 11, Detection and Segmentation

时间:2018-03-04 17:14:24      阅读:489      评论:0      收藏:0      [点我收藏+]

标签:pix   post   multiple   sid   nbsp   tput   alt   solution   osal   

Other Computer Vision Tasks

  • Semantic Segmentation. Pixel level, don‘t care about instances.
  • Classification + Localization. Single object.
  • Object Detection. Multiple object.
  • Instance Segmentation. Multiple object.

Semantic Segmentation

Simple idea: sliding window, crop across the whole image, and ask what the center pixel is. Expensive.

Fully Convoltional (Naive) : let the network to learning all the pixels at once, keep the spacial size, convolutions at original image resolution, expensive.

Fully convolutional: Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

  • Downsampling: Pooling, strided convolution
  • Upsampling: Unpooling (nearest neighbor, bed of nails,  max unpooling in symetrical NN), Transpose convolution (multiply the filter by the pixels on the input, use stride and pad to impose the value on the output).
    技术分享图片

  技术分享图片

Classification + Localization

Get class scores and box coordinates from the CNN,  treat localization as a regression problem, we have 2 loss!

Aside: Human Pose Estimation, for different position, multitask loss.

Object Detection

Since we have different numbers of objects present, it‘s impossible to use regression. Naively,  sliding window.

R-CNN: Based on tranditional techniques in CV, gives thousands proposal region, much better.

Fast R-CNN: Region crop after ConvNet.

Faster R-CNN: Proposal Region Network.

YOLO/SSD: base grids.

Instance Segmentation

Mask R-CNN

 

CS231n笔记 Lecture 11, Detection and Segmentation

标签:pix   post   multiple   sid   nbsp   tput   alt   solution   osal   

原文地址:https://www.cnblogs.com/ichn/p/8504452.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!