题目大意
? \(n\)盏灯排成一列,标号\(1\)到\(n\),一开始标号为\(1\)的灯亮着。
? 现在依次对于\(2\)~\(n\)的每一个质数\(p_i\),指定一盏亮着的灯\(a_i\),点亮所有标号为\(a_i\pm kp_i\)的灯。
输出任意一种方案即可
? \(n\leq100000\)
题解
? 我们可以把灯的编号减\(1\),变成\(0\)~\(n-1\)
? 先用线性筛把质数筛出来
? 如果对于每一个质数都指定编号\(0\)的灯,就可以把除了\(1\)之外的所有灯点亮。
? 所以我们的目标是点亮\(1\)号灯
? 我们要找两个质数\(p_1,p_2\),满足\(p_1|p_2-1,p_1^2\geq n,p_2^2\geq n,p_1+p_2\leq n-1\),然后就可以给\(p_1\)指定\(p_1+1\),给\(p_2\)指定\(p_1+p_2\)。因为所有偶数都在\(p=2\)时被点亮了,所以这样就可以把全部灯点亮了。
? 但是我们会发现n比较小时这个方法有时候会找不到答案,我们只需要写一个暴搜把\(n\leq50\)的情况全部搜出来。
? 我也不知道第\(55\)行的那个剪枝是不是对的反正能搜出一组解。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int p[1000010];
int b[1000010];
int cnt;
int a1[1000010];
int a2[1000010];
int a[1000010];
int cnt1,cnt2;
int ans[1000010];
int c[1000010];
int d[1000010];
int n;
int tcnt;
void dfs(int x)
{
if(x>cnt)
{
int i;
for(i=1;i<=n;i++)
if(!a[i])
return;
// printf("printf(\"%d %d\\n",tcnt,n);
// for(i=1;i<=tcnt;i++)
// printf("%d\\n",ans[i]);
// printf("\");");
printf("%d %d\n",tcnt,n);
for(i=1;i<=tcnt;i++)
printf("%d\n",ans[i]);
exit(0);
}
int i,j;
for(i=1;i<=n;i++)
if(a[i])
{
int s=0;
for(j=i;j<=n;j+=p[x])
{
s+=!a[j];
a[j]++;
}
for(j=i-p[x];j>=1;j-=p[x])
{
s+=!a[j];
a[j]++;
}
ans[x]=i;
if(s)
dfs(x+1);
for(j=i;j<=n;j+=p[x])
a[j]--;
for(j=i-p[x];j>=1;j-=p[x])
a[j]--;
}
}
int main()
{
// freopen("light.in","r",stdin);
// freopen("light.out","w",stdout);
scanf("%d",&n);
memset(b,0,sizeof b);
int i,j;
cnt=0;
for(i=2;i<=n;i++)
{
if(!b[i])
p[++cnt]=i;
for(j=1;j<=cnt&&i*p[j]<=n;j++)
{
b[i*p[j]]=1;
if(i%p[j]==0)
break;
}
}
tcnt=cnt;
if(n<=50)
{
memset(a,0,sizeof a);
a[1]=1;
if(p[cnt]==n)
{
ans[cnt]=1;
cnt--;
}
dfs(1);
printf("%d %d\n",tcnt,n-1);
for(i=1;i<=tcnt;i++)
printf("1\n");
return 0;
}
printf("%d ",tcnt);
if(p[cnt]==n)
{
ans[cnt]=1;
cnt--;
}
n--;
memset(a,0,sizeof a);
int cnt3=0;
for(i=1;i<=cnt;i++)
{
if(ll(p[i])*p[i]<=n)
a1[++cnt1]=p[i];
else
{
a2[++cnt2]=p[i];
d[++cnt3]=p[i];
}
ans[i]=1;
}
for(i=1;i<=cnt1;i++)
{
ans[i]=1;
for(j=a1[i];j<=n;j+=a1[i])
a[j]++;
}
for(i=1;i<=cnt2;i++)
c[a2[i]-1]=i;
int x=0;
for(i=cnt2;i>=1;i--)
{
for(j=a2[i];j<=n;j+=a2[i])
if(c[j]&&a2[i]+j<=n-2)
{
x=i;
ans[i+cnt1]=a2[i]+2;
ans[c[j]+cnt1]=a2[i]+j+2;
break;
}
if(x)
break;
}
printf("%d\n",n+1);
for(i=1;i<=tcnt;i++)
printf("%d\n",ans[i]);
return 0;
}