题目描述
在一个\(k\)维空间中,每个整点被黑白染色。对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算:
- 如果存在一维坐标是\(0\),则颜色是黑色。
- 如果这个点是\((1,1,\ldots,1)\)(每一维都是\(1\)),这个点的颜色是白色
- 如果这个点的\(k\)个前驱(任取一维坐标减\(1\))中的白点有奇数个,那么这个点的颜色就是白色,否则就是黑色
给出一个\(k\)维超矩形,求这个矩形内的白点个数。
\(k\leq 9,1\leq l_i\leq r_i\leq {10}^{15}\)
题解
先把所有坐标\(-1\)。
然后DP。
设\(S=(x_1,x_2,\ldots,x_k)\)。
设\(f_S\)为一个坐标为\(S\)点的颜色(\(1\)为白色,\(0\)为黑色)。
\(f_S=f_{S_1}\oplus f_{S_2}\oplus \cdots \oplus f_{S_k}\)。其中\(S_1,S_2,\ldots,S_k\)为\(S\)的\(k\)个前驱。
这个表达式同样可以看成\(f_S=(\sum_{i=1}^k f_{S_i})\mod 2\)。
那么可以看出\(f_S\)就是从\((0,0,\ldots,0)\)走到\(S\)的方案数\(\mod 2\),就是\(\binom{x_1+x_2+\cdots+x_k}{x_1~x_2~\cdots~x_k}\mod 2\)。
我们推广一下卢卡斯定理,就会发现\(f_S=1\)当且仅当\(x_1,x_2,\ldots,x_k\)之间两两and和为\(0\)。
可以用数位DP计算这个东西。
时间复杂度:\(O(3^{\log r})\)
我偷懒写了\(O(4^{\log r})\)的做法。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
using namespace std;
typedef pair<int,int> pii;
int n,s;
pii a[110];
int f[110][110][110];
int xx[110];
int yy[110];
int m1,m2;
int d[110];
int gao(int x)
{
return x?s/x:0x3fffffff;
}
int gao(int l,int r,int h)
{
int &s=f[h][l][r];
if(~s)
return s;
while(l<=r&&d[l]<=h)
l++;
while(l<=r&&d[r]<=h)
r--;
if(l>r)
return s=0;
int i;
s=0x7fffffff;
for(i=l;i<r;i++)
s=min(s,gao(l,i,h)+gao(i+1,r,h));
int hh=gao(xx[r]-xx[l]);
if(hh<=yy[h])
return s;
int v=upper_bound(yy+1,yy+m2+1,hh)-yy-1;
s=min(s,gao(l,r,v)+1);
return s;
}
void solve()
{
scanf("%d%d",&n,&s);
int i;
for(i=1;i<=n;i++)
{
scanf("%d%d",&a[i].first,&a[i].second);
xx[i]=a[i].first;
yy[i]=a[i].second;
}
sort(xx+1,xx+n+1);
sort(yy+1,yy+n+1);
m1=unique(xx+1,xx+n+1)-xx-1;
m2=unique(yy+1,yy+n+1)-yy-1;
memset(f,-1,sizeof f);
for(i=1;i<=m1;i++)
d[i]=0;
for(i=1;i<=n;i++)
{
a[i].first=lower_bound(xx+1,xx+m1+1,a[i].first)-xx;
a[i].second=lower_bound(yy+1,yy+m2+1,a[i].second)-yy;
d[a[i].first]=max(d[a[i].first],a[i].second);
}
int ans=gao(1,m1,0);
printf("%d\n",ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}