码迷,mamicode.com
首页 > 其他好文 > 详细

【XSY2668】排列统计 DP

时间:2018-03-06 13:49:16      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:time   algo   大于   markdown   时间   枚举   max   方案   span   

题目描述

  给你一个长度为\(n\)的排列\(a\),每次要选择两个数,交换这两个数(这两个数可以相同)。总共要交换\(k\)次。

  最后要统计数列中有多少位置\(i\)满足\(\max_{j\leq i}a_i=a_i\)。求前面这个东西的期望。

  \(n\leq 100,k\leq 80\)

题解

  我们枚举每个数\(y\)每在个位置\(x\)的贡献。把其他数中大于\(y\)的看成\(1\),把其他数中小于\(y\)的看成\(0\),然后DP。

  设\(f_{i,j,k}\)为交换了\(i\)次,\(1\)~\(x-1\)\(j\)\(1\),(\(k\)在下面解释)的方案数

  两条竖线中间是位置\(x\)

  \(k=0\)\(|y|\)

  \(k=1\)\(y|0|\)

  \(k=2\)\(y|1|\)

  \(k=3\)\(|0|y\)

  \(k=4\)\(|1|y\)

  转移很多很繁琐,大家自己去推吧。。。

  时间复杂度:总共有\(O(n^2)\)次DP,每次\(O(nk)\),总的时间复杂度是\(O(n^3k)\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdlib>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
const ll p=1000000007;
ll fp(ll a,ll b)
{
    ll s=1;
    for(;b;b>>=1,a=a*a%p)
        if(b&1)
            s=s*a%p;
    return s;
}
int x,y,i,j,k;
int n,m;
int a[100010];
ll f[90][110][5];
void add(ll &a,ll b)
{
    a=(a+b)%p;
}
ll qian0(){return (k==1||k==2)?x-2-j:x-1-j;}
ll qian1(){return j;}
ll hou0(){return (k==2?y+j-x+1:(k==3?y+j-x-1:y+j-x));}
ll hou1(){return (k==2||k==4)?n-y-j-1:n-y-j;}
ll qian0(int k){return (k==1||k==2)?x-2-j:x-1-j;}
ll qian1(int k){return j;}
ll hou0(int k){return (k==2?y+j-x+1:(k==3?y+j-x-1:y+j-x));}
ll hou1(int k){return (k==2||k==4)?n-y-j-1:n-y-j;}
int now(){return (k==1||k==3)?0:((k==2||k==4)?1:-1);}
int where(){return (k==1||k==2)?0:1;}
ll sqr(ll x){return x*x%p;}
ll gao()
{
    memset(f,0,sizeof f);
    int h=0,hh;
    for(i=1;i<x;i++)
        if(a[i]>y)
            h++;
    for(i=1;i<=n;i++)
        if(a[i]==y)
        {
            hh=i;
            break;
        }
    if(hh==x)
        f[0][h][0]=1;
    else if(hh<x)
        if(a[x]<y)
            f[0][h][1]=1;
        else
            f[0][h][2]=1;
    else
        if(a[x]<y)
            f[0][h][3]=1;
        else
            f[0][h][4]=1;
    for(i=0;i<m;i++)
        for(j=0;j<y;j++)
        {
            for(k=0;k<=4;k++)
                if(f[i][j][k])
                {
                    add(f[i+1][j][k],f[i][j][k]*sqr(qian0()+qian1()));
                    add(f[i+1][j][k],f[i][j][k]*sqr(hou0()+hou1()));
                    add(f[i+1][j][k],f[i][j][k]*2*qian0()%p*hou0());
                    add(f[i+1][j][k],f[i][j][k]*2*qian1()%p*hou1());
                    add(f[i+1][j][k],f[i][j][k]);
                    if(j)
                        add(f[i+1][j-1][k],f[i][j][k]*2*qian1()%p*hou0());
                    if(j<y-1)
                        add(f[i+1][j+1][k],f[i][j][k]*2*qian0()%p*hou1());
                    if(k)
                        add(f[i+1][j][k],f[i][j][k]);
                }
            if(f[i][j][0])
            {
                add(f[i+1][j][1],f[i][j][0]*2*qian0(0));
                if(j)
                    add(f[i+1][j-1][2],f[i][j][0]*2%p*qian1(0));
                add(f[i+1][j][3],f[i][j][0]*2*hou0(0));
                add(f[i+1][j][4],f[i][j][0]*2*hou1(0));
            }
            if(f[i][j][1])
            {
                add(f[i+1][j][0],f[i][j][1]*2);
                add(f[i+1][j][1],f[i][j][1]*2*(qian0(1)+qian1(1)));
                add(f[i+1][j][3],f[i][j][1]*2*hou0(1));
                if(j<y-1)
                    add(f[i+1][j+1][3],f[i][j][1]*2%p*hou1(1));
                add(f[i+1][j][1],f[i][j][1]*2*(qian0(1)+hou0(1)));
                add(f[i+1][j][2],f[i][j][1]*2*hou1(1));
                if(j)
                    add(f[i+1][j-1][2],f[i][j][1]*2%p*qian1(1));
            }
            
            if(f[i][j][2])
            {
                if(j<y-1)
                    add(f[i+1][j+1][0],f[i][j][2]*2);
                add(f[i+1][j][2],f[i][j][2]*2*(qian0(2)+qian1(2)));
                add(f[i+1][j][4],f[i][j][2]*2*hou0(2));
                if(j<y-1)
                    add(f[i+1][j+1][4],f[i][j][2]*2%p*hou1(2));
                add(f[i+1][j][1],f[i][j][2]*2*hou0(2));
                if(j<y-1)
                    add(f[i+1][j+1][1],f[i][j][2]*2%p*qian0(2));
                add(f[i+1][j][2],f[i][j][2]*2*(qian1(2)+hou1(2)));
            }
            
            if(f[i][j][3])
            {
                add(f[i+1][j][0],f[i][j][3]*2);
                add(f[i+1][j][3],f[i][j][3]*2*(hou0(3)+hou1(3)));
                add(f[i+1][j][1],f[i][j][3]*2*qian0(3));
                if(j)
                    add(f[i+1][j-1][1],f[i][j][3]*2*qian1(3));
                add(f[i+1][j][3],f[i][j][3]*2*(qian0(3)+hou0(3)));
                add(f[i+1][j][4],f[i][j][3]*2*hou1(3));
                if(j)
                    add(f[i+1][j-1][4],f[i][j][3]*2*qian1(3));
            }
            
            if(f[i][j][4])
            {
                add(f[i+1][j][0],f[i][j][4]*2);
                add(f[i+1][j][4],f[i][j][4]*2*(hou0(4)+hou1(4)));
                add(f[i+1][j][2],f[i][j][4]*2*qian0(4));
                if(j)
                    add(f[i+1][j-1][2],f[i][j][4]*2*qian1(4));
                add(f[i+1][j][3],f[i][j][4]*2*hou0(4));
                if(j<y-1)
                    add(f[i+1][j+1][3],f[i][j][4]*2*qian0(4));
                add(f[i+1][j][4],f[i][j][4]*2*(qian1(4)+hou1(4)));
            }
        }
    return f[m][0][0];
}
int main()
{
    open("pltj");
    scanf("%d%d",&n,&m);
    int i;
    for(i=1;i<=n;i++)
        scanf("%d",&a[i]);
    ll ans=0;
    for(x=1;x<=n;x++)
        for(y=1;y<=n;y++)
            if(y>=x)
                ans=(ans+gao())%p;
    ans=ans*fp(fp(n,2*m),p-2)%p;
    printf("%lld\n",ans);
    return 0;
}

【XSY2668】排列统计 DP

标签:time   algo   大于   markdown   时间   枚举   max   方案   span   

原文地址:https://www.cnblogs.com/ywwyww/p/8513754.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!