将陆续上传本人写的新书《自己动手写CPU》,今天是第35篇,我尽量每周四篇
开展晒书评送书活动,在亚马逊、京东、当当三大图书网站上,发表《自己动手写CPU》书评的前十名读者,均可获赠《步步惊芯——软核处理器内部设计分析》一书,大家踊跃参与吧!活动时间:2014-9-11至2014-10-20
转移指令的实现过程比较长,分两次介绍,今天是第一次
修改取指阶段的PC模块如下,主要修改一点:如果branch_flag_i为Branch,那么设置新的PC值为branch_target_address_i。完整代码位于本书附带光盘Code\Chapter8目录下的pc_reg.v文件。
module pc_reg(
input wire clk,
input wire rst,
// 来自控制模块的信息
input wire[5:0] stall,
// 来自译码阶段ID模块的信息
input wire branch_flag_i,
input wire[`RegBus] branch_target_address_i,
output reg[`InstAddrBus] pc ,
output reg ce
);
......
always @ (posedge clk) begin
if (ce == `ChipDisable) begin
pc <= 32'h00000000;
end else if(stall[0] == `NoStop) begin
if(branch_flag_i == `Branch) begin
pc <= branch_target_address_i;
end else begin
pc <= pc + 4'h4;
end
end
end
endmodule
其中Branch是defines.v中给出的宏定义:
`define Branch 1'b1 // 转移
`define NotBranch 1'b0 // 不转移
1、修改ID模块
参考图8-6可知,ID模块需要增加一些接口,增加的接口描述如表8-2所示。
在ID模块要增加对转移指令的分析,根据图8-3、8-4给出的转移指令格式可得,确定转移指令的过程如图8-7所示。
其中涉及的宏定义如下,在本书附带光盘Code\Chapter8目录下的defines.v文件中可以找到这些定义。
`define EXE_J 6'b000010 `define EXE_JAL 6'b000011 `define EXE_JALR 6'b001001 `define EXE_JR 6'b001000 `define EXE_BEQ 6'b000100 `define EXE_BGEZ 5'b00001 `define EXE_BGEZAL 5'b10001 `define EXE_BGTZ 6'b000111 `define EXE_BLEZ 6'b000110 `define EXE_BLTZ 5'b00000 `define EXE_BLTZAL 5'b10000 `define EXE_BNE 6'b000101 此外,还新增如下宏定义,在实现转移指令时会使用到: `define InDelaySlot 1'b1 // 在延迟槽中 `define NotInDelaySlot 1'b0 // 不在延迟槽中
修改译码阶段的ID模块如下。完整代码请参考本书附带光盘Code\Chapter8目录下的id.v文件。
module id(
......
// 如果上一条指令是转移指令,那么下一条指令进入译码阶段的时候,输入变量
// is_in_delayslot_i为true,表示是延迟槽指令,反之,为false
input wire is_in_delayslot_i,
......
output reg next_inst_in_delayslot_o,
output reg branch_flag_o,
output reg[`RegBus] branch_target_address_o,
output reg[`RegBus] link_addr_o,
output reg is_in_delayslot_o,
......
);
......
wire[`RegBus] pc_plus_8;
wire[`RegBus] pc_plus_4;
wire[`RegBus] imm_sll2_signedext;
assign pc_plus_8 = pc_i + 8; //保存当前译码阶段指令后面第2条指令的地址
assign pc_plus_4 = pc_i + 4; //保存当前译码阶段指令后面紧接着的指令的地址
// imm_sll2_signedext对应分支指令中的offset左移两位,再符号扩展至32位的值
assign imm_sll2_signedext = {{14{inst_i[15]}}, inst_i[15:0], 2'b00 };
always @ (*) begin
if (rst == `RstEnable) begin
......
link_addr_o <= `ZeroWord;
branch_target_address_o <= `ZeroWord;
branch_flag_o <= `NotBranch;
next_inst_in_delayslot_o <= `NotInDelaySlot;
end else begin
......
aluop_o <= `EXE_NOP_OP;
alusel_o <= `EXE_RES_NOP;
wd_o <= inst_i[15:11]; // 默认目的寄存器地址wd_o
wreg_o <= `WriteDisable;
instvalid <= `InstInvalid;
reg1_read_o <= 1'b0;
reg2_read_o <= 1'b0;
reg1_addr_o <= inst_i[25:21]; // 默认的reg1_addr_o
reg2_addr_o <= inst_i[20:16]; // 默认的reg2_addr_o
imm <= `ZeroWord;
link_addr_o <= `ZeroWord;
branch_target_address_o <= `ZeroWord;
branch_flag_o <= `NotBranch;
next_inst_in_delayslot_o <= `NotInDelaySlot;
case (op)
`EXE_SPECIAL_INST: begin
case (op2)
5'b00000: begin
case (op3)
......
`EXE_JR: begin // jr指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_JR_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
link_addr_o <= `ZeroWord;
branch_target_address_o <= reg1_o;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
instvalid <= `InstValid;
end
`EXE_JALR: begin // jalr指令
wreg_o <= `WriteEnable;
aluop_o <= `EXE_JALR_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
wd_o <= inst_i[15:11];
link_addr_o <= pc_plus_8;
branch_target_address_o <= reg1_o;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
instvalid <= `InstValid;
end
default: begin
end
endcase
end
default: begin
end
endcase
end
......
`EXE_J: begin // j指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_J_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b0;
reg2_read_o <= 1'b0;
link_addr_o <= `ZeroWord;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
instvalid <= `InstValid;
branch_target_address_o <=
{pc_plus_4[31:28], inst_i[25:0], 2'b00};
end
`EXE_JAL: begin // jal指令
wreg_o <= `WriteEnable;
aluop_o <= `EXE_JAL_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b0;
reg2_read_o <= 1'b0;
wd_o <= 5'b11111;
link_addr_o <= pc_plus_8 ;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
instvalid <= `InstValid;
branch_target_address_o <=
{pc_plus_4[31:28], inst_i[25:0], 2'b00};
end
`EXE_BEQ: begin // beq指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BEQ_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b1;
instvalid <= `InstValid;
if(reg1_o == reg2_o) begin
branch_target_address_o <= pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BGTZ: begin // bgtz指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BGTZ_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
instvalid <= `InstValid;
if((reg1_o[31] == 1'b0) && (reg1_o != `ZeroWord)) begin
branch_target_address_o <= pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BLEZ: begin // blez指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BLEZ_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
instvalid <= `InstValid;
if((reg1_o[31] == 1'b1) || (reg1_o == `ZeroWord)) begin
branch_target_address_o <= pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BNE: begin // bne指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BLEZ_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b1;
instvalid <= `InstValid;
if(reg1_o != reg2_o) begin
branch_target_address_o <= pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_REGIMM_INST: begin
case (op4)
`EXE_BGEZ: begin // bgez指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BGEZ_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
instvalid <= `InstValid;
if(reg1_o[31] == 1'b0) begin
branch_target_address_o <=
pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BGEZAL: begin // bgezal指令
wreg_o <= `WriteEnable;
aluop_o <= `EXE_BGEZAL_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
link_addr_o <= pc_plus_8;
wd_o <= 5'b11111;
instvalid <= `InstValid;
if(reg1_o[31] == 1'b0) begin
branch_target_address_o <=
pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BLTZ: begin // bltz指令
wreg_o <= `WriteDisable;
aluop_o <= `EXE_BGEZAL_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
instvalid <= `InstValid;
if(reg1_o[31] == 1'b1) begin
branch_target_address_o <=
pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
`EXE_BLTZAL: begin // bltzal指令
wreg_o <= `WriteEnable;
aluop_o <= `EXE_BGEZAL_OP;
alusel_o <= `EXE_RES_JUMP_BRANCH;
reg1_read_o <= 1'b1;
reg2_read_o <= 1'b0;
link_addr_o <= pc_plus_8;
wd_o <= 5'b11111;
instvalid <= `InstValid;
if(reg1_o[31] == 1'b1) begin
branch_target_address_o <=
pc_plus_4 + imm_sll2_signedext;
branch_flag_o <= `Branch;
next_inst_in_delayslot_o <= `InDelaySlot;
end
end
default: begin
end
endcase
......
// 输出变量is_in_delayslot_o表示当前译码阶段指令是否是延迟槽指令
always @ (*) begin
if(rst == `RstEnable) begin
is_in_delayslot_o <= `NotInDelaySlot;
end else begin
// 直接等于is_in_delayslot_i
is_in_delayslot_o <= is_in_delayslot_i;
end
end
endmodule
对其中几个典型指令的译码过程解释如下。
(1)jr指令
j指令与jr类似,只是转移目标地址不再是通用寄存器的值,所以不需要读取通用寄存器,设置reg1_read_o为0,转移目标地址如下。
{pc_plus_4[31:28], inst_i[25:0], 2'b00}
(2)jalr指令
jal指令与jalr类似,只是jal指令将返回地址写到寄存器$31中,所以wd_o直接设置为5‘b11111,另外,转移目标地址不再是通用寄存器的值,所以不需要读取通用寄存器,设置reg1_read_o为0,转移目标地址如下。
{pc_plus_4[31:28], inst_i[25:0], 2'b00}(3)beq指令
bne指令与beq类似,只是转移条件是两个通用寄存器的值不相等。
(4)bgtz指令
blez、bgez、bltz指令与bgtz类似,只是转移条件不同。
(5)bgezal指令
bltzal指令与bgezal类似,只是转移条件是地址为rs的通用寄存器的值小于0。
2、修改ID/EX模块
参考图8-6可知,ID/EX模块需要增加一些接口,增加的接口描述如表8-3所示。
ID/EX模块的代码主要修改如下,很简单,当流水线译码阶段没有被暂停时,ID/EX模块在时钟上升沿将新增加的输入传递到对应的输出。完整代码位于本书附带光盘Code\Chapter8目录下的id_ex.v文件。
module id_ex(
......
input wire[`RegBus] id_link_address,
input wire id_is_in_delayslot,
input wire next_inst_in_delayslot_i,
......
output reg[`RegBus] ex_link_address,
output reg ex_is_in_delayslot,
output reg is_in_delayslot_o
);
always @ (posedge clk) begin
if (rst == `RstEnable) begin
......
ex_link_address <= `ZeroWord;
ex_is_in_delayslot <= `NotInDelaySlot;
is_in_delayslot_o <= `NotInDelaySlot;
end else if(stall[2] == `Stop && stall[3] == `NoStop) begin
.....
ex_link_address <= `ZeroWord;
ex_is_in_delayslot <= `NotInDelaySlot;
end else if(stall[2] == `NoStop) begin
......
ex_link_address <= id_link_address;
ex_is_in_delayslot <= id_is_in_delayslot;
is_in_delayslot_o <= next_inst_in_delayslot_i;
end
end
......
原文地址:http://blog.csdn.net/leishangwen/article/details/39459175