码迷,mamicode.com
首页 > 其他好文 > 详细

贝叶斯定理

时间:2018-03-08 17:30:18      阅读:489      评论:0      收藏:0      [点我收藏+]

标签:alt   -name   不难   www.   bubuko   https   png   指令   .net   

众所周知,贝叶斯定理是一种在已知其他概率的情况下求概率的方法:

技术分享图片

首先,对于贝叶斯定理,还是要先了解各个概率所对应的事件。

  P(A|B) 是在 B 发生的情况下 A 发生的概率;

  P(A) 是 A 发生的概率;

  P(B|A) 是在 A 发生的情况下 B 发生的概率;

  P(B) 是 B 发生的概率。

 
 

贝叶斯法则的原理    

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

技术分享图片

因此,

技术分享图片

同理可得,

技术分享图片

所以,

技术分享图片

即,

技术分享图片

这就是条件概率的计算公式。

 

全概率公式    

由于后面要用到,所以除了条件概率以外,这里还要推导全概率公式。

假定样本空间S,是两个事件A与A‘的和。

技术分享图片

上图中,红色部分是事件A,绿色部分是事件A‘,它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

技术分享图片

技术分享图片

在上一节的推导当中,我们已知

技术分享图片

所以,

技术分享图片

这就是全概率公式。它的含义是,如果A和A‘构成样本空间的一个划分,那么事件B的概率,就等于A和A‘的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

技术分享图片

 

 

病人分类的例子    

 

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。某个医院早上收了六个门诊病人,如下表。

症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头疼 建筑工人 脑震荡
头疼 建筑工人 感冒
打喷嚏 教师 感冒
头疼 教师 脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理:

P(A|B) = P(B|A) P(A) / P(B)
可得:
P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒)
    / P(打喷嚏) x P(建筑工人)

这是可以计算的。

P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。
这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

 

贝叶斯滤波器    

首先,BF是什么?

BF是依据机器人传感器获取的观测数据,利用Bayes公式(概率论)去估计机器人的状态的一种手段。

这里的关键点在于,BF假设了机器人当前的状态服从某一个概率分布,将机器人状态估计问题建模为一个概率分布的估计问题,从而利用概率论的数学工具来解决机器人的状态估计。

 

那么为什么要用BF呢?

这是因为,机器人的运动模型以及传感器的观测模型常常受到噪声干扰,而这种噪声都是随机性的。这样建模就可以有利于我们把噪声的分布、统计特性给估计出来,从而去除噪声,得到真实观测以及真实状态。

 

那么,BF具体是怎么对机器人状态估计问题建模的呢?

举一个例子,我做了一只小狗机器人,它身上装了GPS,可以时刻返回小狗机器人的位置。为了遥控它,我还给它装了一个遥控接收装置(根据小狗之前在的位置加上遥控量,也能算出小狗的位置)。但是,我遇到两个问题。一是,我花的钱太少了,买到GPS不太准,本来小狗应该在(5,3)的位置,但是测量的结果却是(5.1,2.8)。二是,小狗机器人接收到指令是前进1米,但是实际走的却可能是0.98米。小狗机器人的观测过程和运动过程中都存在噪声的干扰,这使得我想要知道我的小狗跑到哪里变得很困难,需要借助滤波手段来估计小狗位置。

基于这个例子,由于受到噪声污染,小狗机器人位置和GPS的观测可以被建模为概率分布,以表征其不确定性,即: 

技术分享图片

 


其中,x,yx,y分别代表小狗机器人的位置,以及GPS测量到的小狗机器人的位置。

下标代表的是时间。

这两个式子分别可以称为小狗机器人系统的动态模型(通常用状态方程描述,即从一个状态如何变化到另一个状态)和观测模型(通常用观测方程描述,即当前状态下能够获取到怎么样的观测)

表达的意思是:k时刻小狗的位置服从以1到k-1时刻的小狗位置以及1到k-1时刻的GPS测量值为条件的一个概率分布

另外,k时刻GPS的测量值服从以1到k时刻的小狗位置以及1到k-1时刻的GPS测量值为条件的一个概率分布。

 

 

 

 

 

参考资料:    

机器学习(10)之趣味案例理解朴素贝叶斯

https://mp.weixin.qq.com/s/s0v_afLVqtJhZyn3qHlseQ

可怕的贝叶斯:

http://dy.163.com/v2/article/detail/CU0MJOCV05118CTM.html

算法——贝叶斯:

https://www.cnblogs.com/skyme/p/3564391.html

贝叶斯滤波器:

http://blog.csdn.net/qq_30159351/article/details/53395515

贝叶斯定理

标签:alt   -name   不难   www.   bubuko   https   png   指令   .net   

原文地址:https://www.cnblogs.com/TIANHUAHUA/p/8528904.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!