Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.
123. Best Time to Buy and Sell Stock III 这题是最多能交易2次,而这题是最多k次。
要用动态规划Dynamic programming来解,需要两个递推公式来分别更新两个变量local和global。定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
C++:
class Solution { public: int maxProfit(int k, vector<int> &prices) { if (prices.empty()) return 0; if (k >= prices.size()) return solveMaxProfit(prices); int g[k + 1] = {0}; int l[k + 1] = {0}; for (int i = 0; i < prices.size() - 1; ++i) { int diff = prices[i + 1] - prices[i]; for (int j = k; j >= 1; --j) { l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff); g[j] = max(g[j], l[j]); } } return g[k]; } int solveMaxProfit(vector<int> &prices) { int res = 0; for (int i = 1; i < prices.size(); ++i) { if (prices[i] - prices[i - 1] > 0) { res += prices[i] - prices[i - 1]; } } return res; } };
类似题目:
[LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间
[LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II
[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III
[LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期