池化层
MaxPooling1D层
keras.layers.pooling.MaxPooling1D(pool_size=2, strides=None, padding=‘valid‘)
对时域1D信号进行最大值池化
参数
-
pool_size:整数,池化窗口大小
-
strides:整数或None,下采样因子,例如设2将会使得输出shape为输入的一半,若为None则默认值为pool_size。
-
padding:‘valid’或者‘same’
输入shape
- 形如(samples,steps,features)的3D张量
输出shape
- 形如(samples,downsampled_steps,features)的3D张量
MaxPooling2D层
keras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None, padding=‘valid‘, data_format=None)
为空域信号施加最大值池化
参数
-
pool_size:整数或长为2的整数tuple,代表在两个方向(竖直,水平)上的下采样因子,如取(2,2)将使图片在两个维度上均变为原长的一半。为整数意为各个维度值相同且为该数字。
-
strides:整数或长为2的整数tuple,或者None,步长值。
-
border_mode:‘valid’或者‘same’
-
data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
输入shape
‘channels_first’模式下,为形如(samples,channels, rows,cols)的4D张量
‘channels_last’模式下,为形如(samples,rows, cols,channels)的4D张量
输出shape
‘channels_first’模式下,为形如(samples,channels, pooled_rows, pooled_cols)的4D张量
‘channels_last’模式下,为形如(samples,pooled_rows, pooled_cols,channels)的4D张量
MaxPooling3D层
keras.layers.pooling.MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding=‘valid‘, data_format=None)
为3D信号(空域或时空域)施加最大值池化
本层目前只能在使用Theano为后端时可用
参数
-
pool_size:整数或长为3的整数tuple,代表在三个维度上的下采样因子,如取(2,2,2)将使信号在每个维度都变为原来的一半长。
-
strides:整数或长为3的整数tuple,或者None,步长值。
-
padding:‘valid’或者‘same’
-
data_format:字符串,“channels_first”或“channels_last”之一,代表数据的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128x128的数据为例,“channels_first”应将数据组织为(3,128,128,128),而“channels_last”应将数据组织为(128,128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
输入shape
‘channels_first’模式下,为形如(samples, channels, len_pool_dim1, len_pool_dim2, len_pool_dim3)的5D张量
‘channels_last’模式下,为形如(samples, len_pool_dim1, len_pool_dim2, len_pool_dim3,channels, )的5D张量
输出shape
‘channels_first’模式下,为形如(samples, channels, pooled_dim1, pooled_dim2, pooled_dim3)的5D张量
‘channels_last’模式下,为形如(samples, pooled_dim1, pooled_dim2, pooled_dim3,channels,)的5D张量
AveragePooling1D层
keras.layers.pooling.AveragePooling1D(pool_size=2, strides=None, padding=‘valid‘)
对时域1D信号进行平均值池化
参数
-
pool_size:整数,池化窗口大小
-
strides:整数或None,下采样因子,例如设2将会使得输出shape为输入的一半,若为None则默认值为pool_size。
-
padding:‘valid’或者‘same’
输入shape
- 形如(samples,steps,features)的3D张量
输出shape
- 形如(samples,downsampled_steps,features)的3D张量
AveragePooling2D层
keras.layers.pooling.AveragePooling2D(pool_size=(2, 2), strides=None, padding=‘valid‘, data_format=None)
为空域信号施加平均值池化
参数
-
pool_size:整数或长为2的整数tuple,代表在两个方向(竖直,水平)上的下采样因子,如取(2,2)将使图片在两个维度上均变为原长的一半。为整数意为各个维度值相同且为该数字。
-
strides:整数或长为2的整数tuple,或者None,步长值。
-
border_mode:‘valid’或者‘same’
-
data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
输入shape
‘channels_first’模式下,为形如(samples,channels, rows,cols)的4D张量
‘channels_last’模式下,为形如(samples,rows, cols,channels)的4D张量
输出shape
‘channels_first’模式下,为形如(samples,channels, pooled_rows, pooled_cols)的4D张量
‘channels_last’模式下,为形如(samples,pooled_rows, pooled_cols,channels)的4D张量
AveragePooling3D层
keras.layers.pooling.AveragePooling3D(pool_size=(2, 2, 2), strides=None, padding=‘valid‘, data_format=None)
为3D信号(空域或时空域)施加平均值池化
本层目前只能在使用Theano为后端时可用
参数
-
pool_size:整数或长为3的整数tuple,代表在三个维度上的下采样因子,如取(2,2,2)将使信号在每个维度都变为原来的一半长。
-
strides:整数或长为3的整数tuple,或者None,步长值。
-
padding:‘valid’或者‘same’
-
data_format:字符串,“channels_first”或“channels_last”之一,代表数据的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128x128的数据为例,“channels_first”应将数据组织为(3,128,128,128),而“channels_last”应将数据组织为(128,128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
‘channels_first’模式下,为形如(samples, channels, len_pool_dim1, len_pool_dim2, len_pool_dim3)的5D张量
‘channels_last’模式下,为形如(samples, len_pool_dim1, len_pool_dim2, len_pool_dim3,channels, )的5D张量
输出shape
‘channels_first’模式下,为形如(samples, channels, pooled_dim1, pooled_dim2, pooled_dim3)的5D张量
‘channels_last’模式下,为形如(samples, pooled_dim1, pooled_dim2, pooled_dim3,channels,)的5D张量
GlobalMaxPooling1D层
keras.layers.pooling.GlobalMaxPooling1D()
对于时间信号的全局最大池化
输入shape
- 形如(samples,steps,features)的3D张量
输出shape
- 形如(samples, features)的2D张量
GlobalAveragePooling1D层
keras.layers.pooling.GlobalAveragePooling1D()
为时域信号施加全局平均值池化
输入shape
- 形如(samples,steps,features)的3D张量
输出shape
- 形如(samples, features)的2D张量
GlobalMaxPooling2D层
keras.layers.pooling.GlobalMaxPooling2D(dim_ordering=‘default‘)
为空域信号施加全局最大值池化
参数
- data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
输入shape
‘channels_first’模式下,为形如(samples,channels, rows,cols)的4D张量
‘channels_last’模式下,为形如(samples,rows, cols,channels)的4D张量
输出shape
形如(nb_samples, channels)的2D张量
GlobalAveragePooling2D层
keras.layers.pooling.GlobalAveragePooling2D(dim_ordering=‘default‘)
为空域信号施加全局平均值池化
参数
- data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是
~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
输入shape
‘channels_first’模式下,为形如(samples,channels, rows,cols)的4D张量
‘channels_last’模式下,为形如(samples,rows, cols,channels)的4D张量
输出shape
形如(nb_samples, channels)的2D张量
艾伯特(http://www.aibbt.com/)国内第一家人工智能门户