码迷,mamicode.com
首页 > 其他好文 > 详细

Kafka初步学习

时间:2018-03-11 17:38:13      阅读:182      评论:0      收藏:0      [点我收藏+]

标签:sage   bootstrap   成功   包括   flume-ng   tmp目录   kafka   font   顺序   

一、官网教程案例学习
 
Kafka — 分布式消息队列
 
消息系统
消息中间件:缓冲于生产与消费中间
缓冲满了,可以进行Kafka的扩容
 
特性:
水平扩展性、容错性、实时、快
 
 
Kafka架构:
技术分享图片
 
 
理解producer、consumer、broker(缓冲区)、topic(标签)
 
 一个配置文件(server.properties)相当于一个broker
 
 
单节点(一台机器)的Kafka部署方法:
 
开启的时候记得创建多个控制台,方便分别在上面同时启动server(broker)、producer、consumer
 
1. 单broker部署:
 
准备工作:
先安装zookeeper,解压完后只需要更改conf目录下的zoo.cfg,改变dataDir不保存在tmp目录
ZK简单的使用,bin目录下的zkServer启动服务器,然后通过zkCli来连接
 
配置Kafka:
config目录下:
server.properties:
broker.id
listeners
host.name
 
启动:在KAFKA_HOME下
先启动ZK server
zookeeper-server-start.sh $KAFKA_HOME/config/zookeeper.properties
再启动kafka server,启动时要加上config配置文件
kafka-server-start.sh $KAFKA_HOME/config/server.properties
 
创建topic:指定zookeeper端口
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
查看topic
kafka-topics.sh --list --zookeeper localhost:2181
查看topic详细信息
describe命令,可查看活的broker有哪个,leader是哪个等
 
发送消息(生产):指定broker
kafka-console-producer.sh --broker-list localhost:9092 --topic test
 
注意:其中2181端口对应zookeeper server,而9092对应listener broker
 
消费消息:指定zk
kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
 
注意:带有beginning参数的话,会把历史所有的都一起读取
 
 
2. 多broker部署:
 
复制多个server-properties
更改其中的broker.id  listeners   log.dir
 
启动多个kafka server:
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-1.properties &
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-2.properties &
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-3.properties
 
-daemon在后台运行
&代表还有下几行
启动成功后jps中有三个kafka
 
创建多副本topic:
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic my-repli
 
发送和单broker一样,只不过改成多个端口
 
 多broker的容错机制:
如果leader broker干掉了,就会选举新的,也就是干掉任意哪种broker都不会影响全局的使用
 
 
 
 
二、IDEA+Maven环境开发:
 
配置环境:
 
创建scala模版:
技术分享图片
 
填信息:
技术分享图片
 
修改setting路径:
技术分享图片
 
创建完成scala project
修改pom.xml文件:
添加与删除dependency
kafka的版本:
<kafka.version>0.9.0.0</kafka.version>
  <dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka_2.11</artifactId>
    <version>${kafka.version}</version>
  </dependency>
</dependencies>
 
 创建Java文件夹,并把它改成source属性(蓝色),在IDEA右上角改
 
 
 三、用Java API来完成Kafka的Producer和Consumer的编程:
 
 
Producer:
 
首先定义Kafka中的常用变量类,brokerlist、ZK端口、topic名称
/*
* Kafka配置文件, 用于定义producer, consumer
* */
public class KafkaProperties {
 
    //定义端口号
    public static final String ZK = "localhost:2181";
    public static final String TOPIC = "hello_topic";
    public static final String BROKER_LIST = "localhost:9092";
}

 

 
然后创建producer:
  1. 定义全局变量topic,producer(选择kafka.javaapi.producer包)
  2. 写构造函数,包括了:
  3. 外部传入topic
  4. 创建producer,需要传入ProducerConfig对象
  5. PC对象需要传入一些参数,用properties类(java.util包)来传入
  6. properties对象中需要为PC对象设置”metadata.broker.list" “serializer.class" "request.required.acks"
 
最后通过Thread线程run方法来启动producer发送信息
(本测试实现的每隔2s发送一个message)
 
实现代码:
 
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
 
import java.util.Properties;
 
/*
* Kafka生产者
* */
public class KafkaProducer extends Thread{
 
    private String topic;
    //选择kafka.javaapi.producer
    private Producer<Integer, String> producer;
 
    //构造方法,传入topic,生成producer
    public KafkaProducer(String topic) {
 
        this.topic = topic;
 
        //用properties设置ProducerConfig所需要的参数, 这是生成Producer的前提
        //分别是broker_list, 序列化, 握手机制
        Properties properties = new Properties();
        properties.put("metadata.broker.list", KafkaProperties.BROKER_LIST);
        properties.put("serializer.class", "kafka.serializer.StringEncoder");  //此处序列化类用String
        properties.put("request.required.acks", "1");  //可设置为0, 1, -1, 一般生产用1, 最严谨是-1, 不能用0
 
        producer = new Producer<Integer, String>(new ProducerConfig(properties));
    }
 
    //用线程来启动producer
    @Override
    public void run() {
 
        int messageNo = 1;
 
        while(true) {
            String message = "massage_" + messageNo;
            producer.send(new KeyedMessage<Integer, String>(topic, message));
            System.out.println("send: " + message);
 
            messageNo++;
 
            //2s间隔发送一次
            try {
                Thread.sleep(2000);
            } catch(Exception e) {
                e.printStackTrace();
            }
        }
    }
}

 

 
 
Consumer:
 
创建过程:
  1. 构造方法中传入topic
  2. 创建createConnector方法,返回值是一个ConsumerConnector,注意不直接是Consumer
  3. 按照producer一样的方法,往ConsumerConnector中传入所需要的属性zookeeper.connect group.id
 
执行过程:通过Thread的run方法改写:
  1. 为了创建messageStream,先创建一个Map,装topic和kafka stream的数量
  2. 创建messageStream,并获取每次的数据
  3. 对messageStream进行迭代,获取消息
 
实现代码:
 
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
 
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
 
import static com.sun.org.apache.xml.internal.security.keys.keyresolver.KeyResolver.iterator;
import static javafx.scene.input.KeyCode.V;
 
/*
* Kafka消费者
* */
public class KafkaConsumer extends Thread {
 
    private String topic;
 
    public KafkaConsumer(String topic) {
 
        this.topic = topic;
    }
 
    //ConsumerConnector选择kafka.javaapi.consumer包
    //此处是要创建consumer连接器, 而不是创建consumer, 区别于producer
    private ConsumerConnector createConnector() {
 
        //同样地设置ConsumerConfig对象的属性
        //需要设置ZK
        Properties properties = new Properties();
        properties.put("zookeeper.connect", KafkaProperties.ZK);
        properties.put("group.id", KafkaProperties.GROUP_ID);
        return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
    }
 
 
    //线程启动consumer
    @Override
    public void run() {
 
        ConsumerConnector consumer = createConnector();
 
        //由于createMessageStreams需要传入一个Map, 所以创建一个
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        //map中放入topic和kafka stream的数量
        topicCountMap.put(topic, 1);
 
        //创建messageStream, 从源码中可看出它的数据类型
        //String是topic, List是数据比特流
        Map<String, List<KafkaStream<byte[], byte[]>>> messageStream = consumer.createMessageStreams(topicCountMap);
        //获取每次的数据
        KafkaStream<byte[], byte[]> byteStream = messageStream.get(topic).get(0);
 
        //数据流进行迭代
        ConsumerIterator<byte[], byte[]> iterator = byteStream.iterator();
 
        while (iterator.hasNext()) {
 
            //由于iterator里面的是byte类型,要转为String
            String message = new String(iterator.next().message());
            System.out.println("receive:" + message);
        }
    }
}

 

 
四、Kafka简易实战
 
整合Flume和Kafka完成实时数据采集
 
Kafka sink作为producer连接起来
 
技术选型:
Agent1: exec source -> memory channel -> avro sink
Agent2: avro source -> memory channel -> kafka sink(producer)
producer -> consumer
 
 
配置exec-memory-avro:
 
exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel
 
# Describe/configure the source
exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /usr/local/mycode/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c
 
# Describe the sink
exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = localhost
exec-memory-avro.sinks.avro-sink.port = 44444
 
# Use a channel which buffers events in memory
exec-memory-avro.channels.memory-channel.type = memory
 
# Bind the source and sink to the channel
exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel
 
 
 
配置avro-memory-kafka:
 
avro-memory-kafka.sources = avro-source
avro-memory-kafka.sinks = kafka-sink
avro-memory-kafka.channels = memory-channel
 
# Describe/configure the source
avro-memory-kafka.sources.avro-source.type = avro
avro-memory-kafka.sources.avro-source.bind = localhost
avro-memory-kafka.sources.avro-source.port = 44444
 
# Describe the sink
avro-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
avro-memory-kafka.sinks.kafka-sink.kafka.bootstrap.servers = localhost:9092
avro-memory-kafka.sinks.kafka-sink.kafka.topic = hello_topic
avro-memory-kafka.sinks.kafka-sink.kafka.flumeBatchSize = 5
avro-memory-kafka.sinks.kafka-sink.kafka.kafka.producer.acks = 1
 
# Use a channel which buffers events in memory
avro-memory-kafka.channels.memory-channel.type = memory
 
# Bind the source and sink to the channel
avro-memory-kafka.sources.avro-source.channels = memory-channel
avro-memory-kafka.sinks.kafka-sink.channel = memory-channel
 
 
 
启动两个flume agent:(注意先后顺序)
 
flume-ng agent --conf $FLUME_HOME/conf --conf-file $FLUME_HOME/conf/avro-memory-kafka.conf --name avro-memory-kafka -Dflume.root.logger=INFO,console
 
flume-ng agent --conf $FLUME_HOME/conf --conf-file $FLUME_HOME/conf/exec-memory-avro.conf --name exec-memory-avro -Dflume.root.logger=INFO,console
 
 
 
启动kafka consumer:
 
kafka-console-consumer.sh --zookeeper localhost:2181 --topic hello_topic
 
执行过程比较慢!要等一下 concumer的控制台才有数据显示
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kafka初步学习

标签:sage   bootstrap   成功   包括   flume-ng   tmp目录   kafka   font   顺序   

原文地址:https://www.cnblogs.com/kinghey-java-ljx/p/8544255.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!