码迷,mamicode.com
首页 > 其他好文 > 详细

李宏毅机器学习 - 0 Introduction

时间:2018-03-15 00:35:39      阅读:318      评论:0      收藏:0      [点我收藏+]

标签:ons   机器学习   class   alt   force   ati   machine   src   structure   

ML Lecture 0: Introduction of Machine Learning

  1. AI v.s. ML v.s. DL
    • Artificial intelligence -> objective
    • Machine learning -> methods
    • Deep learning -> one method of machine learning
  2. Hand-crafted rules
    • many "ifs"
    • hard to consider all possibilities
    • no learning (limited)
    • lots of human efforts (not suitable for small industry)
  3. Machine learning
    • write programs for learning
    • looking for a function from data
      • 1. defining a set of functions -> model
      • 2. training data -> evaluate the goodness of functions (supervised learning)
      • 3. picking the best function f star
      • 4. using f star
    • 1-3 -> traing 4 -> testing
  4. Learning map
    • 技术分享图片
  5. Regression (output: scalar/value/real number)
    • e.g. prediction of PM2.5
  6. Classification  
    • binary classification (e.g. spam filtering)
    • multi-class classification (e.g. document classification)
  7. Supervised learning
    • training data: input / output pair of target function (function output -> label)
    • hard to collect a large amount of labelled data -> semi-supervised learning / tramsfer learning / unsuperviesd learning / reinforcement learning
  8. Structured learning - beyond classification
    • e.g. speech recognition / machine translation
  9. Reinforcement learning
    • no correct answers but only critics (评价)

李宏毅机器学习 - 0 Introduction

标签:ons   机器学习   class   alt   force   ati   machine   src   structure   

原文地址:https://www.cnblogs.com/aintro/p/8570799.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!