码迷,mamicode.com
首页 > 其他好文 > 详细

62. Unique Paths

时间:2018-03-20 11:45:53      阅读:158      评论:0      收藏:0      [点我收藏+]

标签:not   down   公式   解析   possible   des   www.   inf   技术   

62. Unique Paths

题目

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

技术分享图片

解析

class Solution_62 {
public:
    int uniquePaths(int m, int n) {
        //matrix(m*n)
        vector<vector<int>> vecs(m, vector<int>(n, 1));

        for (int i = 1; i < m;i++)
        {
            for (int j = 1; j < n;j++)
            {
                vecs[i][j] = vecs[i - 1][j] + vecs[i][j - 1];
            }
        }
        return vecs[m-1][n-1];
    }

    int uniquePaths1(int m, int n) {
        vector<int > vec(n, 1); //压缩空间
        for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
        if (i * j != 0)
            vec[j] += vec[j - 1];
        return vec[n - 1];
    }

//      链接:https://www.nowcoder.com/questionTerminal/166eaff8439d4cd898e3ba933fbc6358
//      动态规划的复杂度也是n方,可以用排列组合的方式,复杂度为n
//      只能向右走或者向下走,所以从一共需要的步数中挑出n - 1个向下走,剩下的m - 1个就是向右走
//      其实就是从(m - 1 + n - 1)里挑选(n - 1)或者(m - 1)个,c(n, r)     n = (m - 1 + n - 1), r = (n - 1)
//      n!/ (r!* (n - r)!)

    //注意观察到,可以发现循环的值是;C(n, m) = n!/ (m!*(n - m)!),因为n值过大,不可以直接用公式
    //组合数学的递推公式:C(m,n)=C(m,n-1)+C(m-1,n-1)
    //C(n, 1) = n; C(n, n) = 1; C(n, 0) = 1;这样就可以用DP了

    int fun(int n, int m)
    {
        if (m==1)
        {
            return n;
        }
        if (n==m||m==0)
        {
            return 1;
        }
        return fun(n-1, m ) + fun(n - 1, m - 1);    //超时
    }
    int uniquePaths2(int m, int n) {
        
        n = (m - 1 + n - 1);
        m = (m - 1);
        
        int ret=fun(n,m);

        return ret;
    }


};

解析

62. Unique Paths

标签:not   down   公式   解析   possible   des   www.   inf   技术   

原文地址:https://www.cnblogs.com/ranjiewen/p/8608252.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!