题意:给你n个点,m条边,一个起点s,一个终点t的无向图,问在某两个点之间加一条边,不改变s到t的最短路径的值的加法有多少种,所有点一定连接;
思路:首先,默认相邻两点的权值都为1,会改变值的情况有:
从s出发,算出s的单源最短路dist,如果dist[x]+1<dist[t];
从t出发,算出t的单源最短路Dist,如果Dist[x]+1<Dist[s];
介于两点之间,s—t之间的某两个点之间+1<dist[s],也就是:dist[x]+Dist[y]+1<(Dist[s] | | dist[t]);
所以从s跑一遍,再从t跑一遍最短路,然后遍历所有点,把能改变值的情况算出来;
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<set>
#include<cmath>
#define maxn 100005
const int inf=99999;
using namespace std;
struct Edge
{
int next;
int to;
int w;
}edge[maxn];
struct node
{
int num;
int dist;
node(int _num=0,int _dist=0):num(_num),dist(_dist){}
friend bool operator<(node a,node b)
{
return a.dist>b.dist;
}
};
int head[maxn];
int s[maxn];
int n,m,cnt;
int dis[maxn];
int dise[maxn];
int disb[maxn];
int book[1005][1005];
//int book[maxn];
bool vis[maxn];
int be,en;
void add(int u,int v,int w)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
edge[cnt].w=w;
head[u]=cnt++;
}
void dij(int x)
{
priority_queue<node>que;
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[x]=0;
que.push(node(x,0));
while(!que.empty())
{
node p=que.top();
que.pop();
int now=p.num;
if(vis[now])
continue;
vis[now]=true;
for(int i=head[now];i!=-1;i=edge[i].next)
{
Edge e=edge[i];
if(dis[e.to]>dis[now]+e.w&&!vis[e.to])
{
dis[e.to]=dis[now]+e.w;
que.push(node(e.to,dis[e.to]));
}
}
}
}
int main()
{
int x,y,w;
cin>>n>>m>>be>>en;
cnt=0;
memset(book,0,sizeof(book));
memset(head,-1,sizeof(head));
for(int i=1;i<=m;i++)
{
cin>>x>>y;
add(x,y,1);
add(y,x,1);
}
int zz=0;
int ans=0;
for(int i=1;i<=n-1;i++)
zz+=i;
dij(en);
for(int i=1;i<=n;i++)
dise[i]=dis[i];
dij(be);
for(int i=1;i<=n;i++)
disb[i]=dis[i];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
continue;
if(disb[i]+dise[j]+1<dise[be])
{
if(book[i][j]==0&&book[j][i]==0)
{
ans++;
}
book[i][j]=book[j][i]=1;
}
else if(disb[j]+1<dise[be]-1)
{
if(book[j][en]==0&&book[en][j]==0)
ans++;
book[j][en]=book[en][j]=1;
}
else if(dise[j]+1<disb[en])
{
if(book[be][j]==0&&book[j][en]==0)
ans++;
book[j][be]=book[be][j]=1;
}
}
}
// cout<<ans<<endl;
zz-=m;
cout<<zz-ans<<endl;
return 0;
}
---恢复内容结束---