http://www.lydsy.com/JudgeOnline/problem.php?id=3994
https://www.luogu.org/problemnew/show/P3327#sub
参考:https://blog.csdn.net/zmoiynlp/article/details/45176129
(他的公式好像最后一点有些问题)
请先锻炼好抗打击能力再做这道题,可以看我的模板:数论函数 & 莫比乌斯反演
我们有\(d(ij)=\sum_{k|i}\sum_{l|j}[gcd(k,l)==1]\)
(感性证明很简单,于是就不证了)
(这个是本题第一难的地方,信息数学竞赛)
\(\sum_{i=1}^n\sum_{j=1}^md(ij)\)
\(=\sum_{i=1}^n\sum_{j=1}^m\sum_{k|i}\sum_{l|j}[gcd(k,l)=1]\)
\(=\sum_{k=1}^n\sum_{l=1}^m\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{l}\rfloor[gcd(k,l)=1]\)(跳了步,希望大家看得懂)
\(=\)套路(实则是跳步)
\(=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{k=1}^{n}\sum_{l=1}^{m}\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{l}\rfloor[k|d][l|d]\)
\(=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{l=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n} {kd}\rfloor\lfloor\frac{m}{ld}\rfloor\)
我们令\(g(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\)
我们的套路有\(\sum_{i=1}^n\sum_{j=1}^n[i|j]=g(n)\)
是的你没有看错这玩意就是约数函数的前缀和。
(如果你还没看出来的话,把两个sigma颠倒一下)
(这是本题第二难的地方,信息数学竞赛)
于是预处理约数函数的前缀和。
(用到了算数基本定理的推导和约数函数是积性函数的性质,可见https://blog.csdn.net/ControlBear/article/details/77527115
(emmm……就算你全推出来了,这个不会也白搭,信息数学竞赛)
(我为什么要去作死做信息数学竞赛题啊!)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e4+5;
inline int read(){int x;scanf("%d",&x);return x;}
ll su[N],miu[N],d[N],c[N];
int he[N];
void init(int n){
int tot=0;
miu[1]=d[1]=c[1]=1;
for(int i=2;i<=n;i++){
if(!he[i]){
su[++tot]=i;
miu[i]=-1;
c[i]=1;d[i]=2;
}
for(int j=1;j<=tot;j++){
if(i*su[j]>n)break;
he[i*su[j]]=1;
if(i%su[j]==0){
miu[i*su[j]]=0;
d[i*su[j]]=d[i]/(c[i]+1)*(c[i]+2);
c[i*su[j]]=c[i]+1;
break;
}else{
miu[i*su[j]]=miu[i]*miu[su[j]];
d[i*su[j]]=d[i]*d[su[j]];
c[i*su[j]]=1;
}
}
}
for(int i=1;i<=n;i++){
miu[i]+=miu[i-1];
d[i]+=d[i-1];
}
}
int main(){
init(5e4);
int t=read();
while(t--){
ll n=read(),m=read();
ll ans=0;
for(ll i=1,j;i<=min(n,m);i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(miu[j]-miu[i-1])*d[n/i]*d[m/i];
}
printf("%lld\n",ans);
}
return 0;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++