码迷,mamicode.com
首页 > 其他好文 > 详细

分类--真与假以及正类别与负类别

时间:2018-03-25 11:56:22      阅读:1895      评论:0      收藏:0      [点我收藏+]

标签:positive   matrix   order   tps   寓言故事   strong   width   style   组成   

在本部分,我们将定义用于评估分类模型的指标的主要组成部分。不过,我们先来看一则寓言故事:


伊索寓言:狼来了(精简版)

有一位牧童要照看镇上的羊群,但是他开始厌烦这份工作。为了找点乐子,他大喊道:“狼来了!”其实根本一头狼也没有出现。村民们迅速跑来保护羊群,但他们发现这个牧童是在开玩笑后非常生气。

[这样的情形重复出现了很多次。]

一天晚上,牧童看到真的有一头狼靠近羊群,他大声喊道:“狼来了!”村民们不想再被他捉弄,都待在家里不出来。这头饥饿的狼对羊群大开杀戒,美美饱餐了一顿。这下子,整个镇子都揭不开锅了。恐慌也随之而来。


我们做出以下定义:

  • “狼来了”是正类别。
  • “没有狼”是负类别。

我们可以使用一个 2x2 [混淆矩阵](/machine-learning/crash-course/glossary#confusion_matrix] 来总结我们的“狼预测”模型,该矩阵描述了所有可能出现的结果(共四种):

真正例 (TP):
  • 真实情况:受到狼的威胁。
  • 牧童说:“狼来了。”
  • 结果:牧童是个英雄。
假正例 (FP):
  • 真实情况:没受到狼的威胁。
  • 牧童说:“狼来了。”
  • 结果:村民们因牧童吵醒他们而感到非常生气。
假负例 (FN):
  • 真实情况:受到狼的威胁。
  • 牧童说:“没有狼”。
  • 结果:狼吃掉了所有的羊。
真负例 (TN):
  • 真实情况:没受到狼的威胁。
  • 牧童说:“没有狼”。
  • 结果:大家都没事。

真正例是指模型将正类别样本正确地预测为正类别。同样,真负例是指模型将负类别样本正确地预测为负类别。

假正例是指模型将负类别样本错误地预测为正类别,而假负例是指模型将正类别样本错误地预测为负类别。

在后面的部分中,我们将介绍如何使用从这四种结果中衍生出的指标来评估分类模型。


引用

分类 (Classification):真与假以及正类别与负类别

分类--真与假以及正类别与负类别

标签:positive   matrix   order   tps   寓言故事   strong   width   style   组成   

原文地址:https://www.cnblogs.com/taro/p/8643269.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!