题面在这里
题意
一条战线上共有\(n\)个检查点,每个检查点必须放置一个木偶或者放置一个守卫塔,
放置守卫塔的费用为\(a_i\),放置木偶的费用为该位置到右边第一个守卫塔的距离,
求最小费用。
数据范围
\[1\le n\le10^6,1\le a_i\le 10^9\]
sol
设\(f[i]\)表示强制在第\(i\)处建守卫塔时前\(i\)个检查点所需的最小费用,有
\[f[i]=min_{j=0}^{i-1}(f[j]+\sum_{k=j+1}^{i-1}(i-k)+a[i])\]
考虑斜率优化:
\[=min_{j=0}^{i-1}(f[j]+\sum_{k=1}^{i-j-1}k+a[i])\]
\[=min_{j=0}^{i-1}(f[j]+\frac{1}{2}j(j+1)-ij)+a[i]+\frac{1}{2}i(i-1)\]
斜率\(k=i\)单增,插点\((i,f[i]+\frac{1}{2}i(i+1))\)即可
代码
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e8;
const int N=1000010;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!=‘-‘&&(ch<‘0‘||ch>‘9‘))ch=getchar();
if(ch==‘-‘)w=-1,ch=getchar();
while(ch<=‘9‘&&ch>=‘0‘)data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
freopen(".in","r",stdin);
freopen(".out","w",stdout);
}
ll n,a[N],f[N];
struct node{ll x,y;}Q[N];ll L=1,R;
il void insert(node q){
while(L<R&&(Q[R].y-Q[R-1].y)*(q.x-Q[R].x)>(q.y-Q[R].y)*(Q[R].x-Q[R-1].x))R--;
Q[++R]=q;
}
il ll query(ll k){
while(L<R&&k*(Q[L+1].x-Q[L].x)>(Q[L+1].y-Q[L].y))L++;
return Q[L].y-k*Q[L].x;
}
int main()
{
n=read();for(RG int i=1;i<=n;i++)a[i]=read();
insert((node){0,0});
for(RG int i=1;i<=n;i++){
f[i]=query(i)+1ll*(i-1)*i/2+a[i];
insert((node){i,f[i]+1ll*(i+1)*i/2});
//一定要记得开1ll!!!
}
printf("%lld\n",f[n]);
return 0;
}