一、原理部分:
只能图片形式展现了~~~
二、Python手工实现线性回归
import pandas as pd import numpy as np import matplotlib.pyplot as plt class linear_regression(object): #计算均方误差损失 def compute_loss(self,y,y_hat): return np.average((y-y_hat)**2) #梯度下降算法 def compute_gradient(self,n,x,y): x[‘temp‘]=1 w = np.zeros(len(x.columns)) for i in range(n): w -= 0.00001*np.dot(x.T,(np.dot(x,w)-y)) return w #数据标准化 def stand_data(self,x): return (x-x.mean())/x.std() #作图 def plot_data(self,y,y_hat): fig,ax = plt.subplots() fig.set_size_inches(14,7) ax.plot(np.arange(len(y)),y) ax.plot(np.arange(len(y_hat)),y_hat) if __name__ == ‘__main__‘: data = pd.read_csv(‘data.csv‘) x = data.iloc[:,1:-1] y = data.iloc[:,-1] lin_reg = linear_regression() #数据标准化 x = lin_reg.stand_data(x) #标准化后求参数,在求参数过程中,自动给x增加一列偏移项1 w = lin_reg.compute_gradient(10000,x,y) print(‘参数值:‘,w) #预测值 y_hat = np.dot(x,w) #计算均方误差 ls = lin_reg.compute_loss(y,y_hat) print(‘均方误差:‘,ls) #画图 lin_reg.plot_data(y,y_hat)
参数值: [ 3.92908866 2.7990655 -0.02259148 14.02249997]
均方误差: 2.78412631453