一、前述
根据前文中架构,本文我们讨论线下部分构建训练集部分。因为我们离线部分模型的选择是逻辑回归,所以我们数据必须有x和y.
二、具体流程
1.从数据库中分离出我们需要的数据。
用户行为表(日志)
用户历史下载表
商品词表(商品的基本特征)
2.构建训练集中的关联特征
流程:
2.构建训练集中的基本特征
总结:注意特征名离散化因为如果特征不离散化会造成数据之间有关系。
三、具体构建过程
1、hive建表
真实的生产场景涉及到大概五十张表的字段,这里全部简化流程,直接给出最终的三张表:
应用词表:
CREATE EXTERNAL TABLE IF NOT EXISTS dim_rcm_hitop_id_list_ds ( hitop_id STRING, name STRING, author STRING, sversion STRING, ischarge SMALLINT, designer STRING, font STRING, icon_count INT, stars DOUBLE, price INT, file_size INT, comment_num INT, screen STRING, dlnum INT )row format delimited fields terminated by ‘\t‘;
/**
*
*模拟app的商品词表
hitop_id STRING, 应用软件ID
name STRING, 名称
author STRING, 作者
sversion STRING, 版本号
ischarge SMALLINT, 收费软件
designer STRING, 设计者
font STRING, 字体
icon_count INT, 有几张配图
stars DOUBLE, 评价星级
price INT, 价格
file_size INT, 大小
comment_num INT, 评论数据
screen STRING, 分辨率
dlnum INT 下载数量
*/
用户历史下载表:
CREATE EXTERNAL TABLE IF NOT EXISTS dw_rcm_hitop_userapps_dm ( device_id STRING, devid_applist STRING, device_name STRING, pay_ability STRING )row format delimited fields terminated by ‘\t‘;
/**
*用户下载历史表 这里没有用户这个概念 手机设备ID就是userId
* device_id STRING, 手机设备ID
devid_applist STRING, 下载过软件列表
device_name STRING, 设备名称
pay_ability STRING 支付能力
*/
正负例样本(用户当前行为即日志)表:
CREATE EXTERNAL TABLE IF NOT EXISTS dw_rcm_hitop_sample2learn_dm ( label STRING, device_id STRING, hitop_id STRING, screen STRING, en_name STRING, ch_name STRING, author STRING, sversion STRING, mnc STRING, event_local_time STRING, interface STRING, designer STRING, is_safe INT, icon_count INT, update_time STRING, stars DOUBLE, comment_num INT, font STRING, price INT, file_size INT, ischarge SMALLINT, dlnum INT )row format delimited fields terminated by ‘\t‘;
/**
* 正负例样本表 = 浏览记录+标签
label STRING, Y列,-1或1代表正负例 label值实际上是批处理得出来的,用户浏览了并在一段时间内下载为正例
device_id STRING, 设备ID
hitop_id STRING, 应用ID
screen STRING, 手机软件需要的分辨率
en_name STRING, 英文名
ch_name STRING, 中文名
author STRING, 作者
sversion STRING, 版本
mnc STRING, Mobile Network Code,移动网络号码
event_local_time STRING, 浏览的时间
interface STRING,
designer STRING,
is_safe INT,
icon_count INT,
update_time STRING,
stars DOUBLE,
comment_num INT,
font STRING,
price INT,
file_size INT,
ischarge SMALLINT,
dlnum INT
*/
2、load数据
分别往三张表load数据:
商品词表:
load data local inpath ‘/opt/sxt/recommender/script/applist.txt‘ into table dim_rcm_hitop_id_list_ds;
用户历史下载表:
load data local inpath ‘/opt/sxt/recommender/script/userdownload.txt‘ into table dw_rcm_hitop_userapps_dm;
正负例样本表:
load data local inpath ‘/opt/sxt/recommender/script/sample.txt‘ into table dw_rcm_hitop_sample2learn_dm;
3、构建训练数据
3.1创建临时表
创建处理数据时所需要的临时表
CREATE TABLE IF NOT EXISTS tmp_dw_rcm_hitop_prepare2train_dm
(
device_id STRING,
label STRING,
hitop_id STRING,
screen STRING,
ch_name STRING,
author STRING,
sversion STRING,
mnc STRING,
interface STRING,
designer STRING,
is_safe INT,
icon_count INT,
update_date STRING,
stars DOUBLE,
comment_num INT,
font STRING,
price INT,
file_size INT,
ischarge SMALLINT,
dlnum INT,
idlist STRING,
device_name STRING,
pay_ability STRING
)row format delimited fields terminated by ‘\t‘;
最终保存训练集的表
CREATE TABLE IF NOT EXISTS dw_rcm_hitop_prepare2train_dm
(
label STRING,
features STRING
)row format delimited fields terminated by ‘\t‘;
3.2 训练数据预处理过程
首先将数据从正负例样本和用户历史下载表数据加载到临时表中
INSERT OVERWRITE TABLE tmp_dw_rcm_hitop_prepare2train_dm
SELECT
t2.device_id,
t2.label,
t2.hitop_id,
t2.screen,
t2.ch_name,
t2.author,
t2.sversion,
t2.mnc,
t2.interface,
t2.designer,
t2.is_safe,
t2.icon_count,
to_date(t2.update_time),
t2.stars,
t2.comment_num,
t2.font,
t2.price,
t2.file_size,
t2.ischarge,
t2.dlnum,
t1.devid_applist,
t1.device_name,
t1.pay_ability
FROM
(
SELECT
device_id,
devid_applist,
device_name,
pay_ability
FROM
dw_rcm_hitop_userapps_dm
) t1
RIGHT OUTER JOIN
(
SELECT
device_id,
label,
hitop_id,
screen,
ch_name,
author,
sversion,
IF (mnc IN (‘00‘,‘01‘,‘02‘,‘03‘,‘04‘,‘05‘,‘06‘,‘07‘), mnc,‘x‘) AS mnc,
interface,
designer,
is_safe,
IF (icon_count <= 5,icon_count,6) AS icon_count,
update_time,
stars,
IF ( comment_num IS NULL,0,
IF ( comment_num <= 10,comment_num,11)) AS comment_num,
font,
price,
IF (file_size <= 2*1024*1024,2,
IF (file_size <= 4*1024*1024,4,
IF (file_size <= 6*1024*1024,6,
IF (file_size <= 8*1024*1024,8,
IF (file_size <= 10*1024*1024,10,
IF (file_size <= 12*1024*1024,12,
IF (file_size <= 14*1024*1024,14,
IF (file_size <= 16*1024*1024,16,
IF (file_size <= 18*1024*1024,18,
IF (file_size <= 20*1024*1024,20,21)))))))))) AS file_size,
ischarge,
IF (dlnum IS NULL,0,
IF (dlnum <= 50,50,
IF (dlnum <= 100,100,
IF (dlnum <= 500,500,
IF (dlnum <= 1000,1000,
IF (dlnum <= 5000,5000,
IF (dlnum <= 10000,10000,
IF (dlnum <= 20000,20000,20001)))))))) AS dlnum
FROM
dw_rcm_hitop_sample2learn_dm
) t2
ON (t1.device_id = t2.device_id);
选择右外关联的原因是因为以用户行为为基准。
这张表得到的数据就是关联特征中的数据,截图如下:
然后再利用python脚本处理格式
这里要先讲python脚本加载到hive中
ADD FILE /opt/sxt/recommender/script/dw_rcm_hitop_prepare2train_dm.py;
可以通过list files;查看是不是python文件加载到了hive
在hive中使用python脚本处理数据的原理:
Hive会以输出流的形式将数据交给python脚本,python脚本以输入流的形式来接受数据,接受来数据以后,在python中就行一系列的数据处理,处理完毕后,又以输出流的形式交给Hive,交给了hive就说明了就处理后的数据成功保存到hive表中了。
INSERT OVERWRITE TABLE dw_rcm_hitop_prepare2train_dm SELECT TRANSFORM (t.*) USING ‘python dw_rcm_hitop_prepare2train_dm.py‘ AS (label,features) FROM ( SELECT label, hitop_id, screen, ch_name, author, sversion, mnc, interface, designer, icon_count, update_date, stars, comment_num, font, price, file_size, ischarge, dlnum, idlist, device_name, pay_ability FROM tmp_dw_rcm_hitop_prepare2train_dm ) t;
python处理流程:
#! /usr/bin/env python # -*- coding: utf-8 -*- # ---------------------------------------------------------------------------- # File Name: dw_rcm_hitop_prepare2train_dm.py # Copyright(C)Huawei Technologies Co.,Ltd.1998-2014.All rights reserved. # Describe: # Input: tmp_dw_rcm_hitop_prepare2train_dm # Output: dw_rcm_hitop_prepare2train_dm import sys import codecs import random import math import time import datetime if __name__ == "__main__": random.seed(time.time()) for l in sys.stdin: d = l.strip().split(‘\t‘) if len(d) != 21: continue # Extract data from the line label = d.pop(0) hitop_id = d.pop(0) screen = d.pop(0) ch_name = d.pop(0) author = d.pop(0) sversion = d.pop(0) mnc = d.pop(0) interface = d.pop(0) designer = d.pop(0) icon_count = d.pop(0) update_date = d.pop(0) stars = d.pop(0) comment_num = d.pop(0) font = d.pop(0) price = d.pop(0) file_size = d.pop(0) ischarge = d.pop(0) dlnum = d.pop(0) hitopids = d.pop(0) device_name = d.pop(0) pay_ability = d.pop(0) # Construct feature vector features = [] features.append(("Item.id,%s" % hitop_id, 1)) features.append(("Item.screen,%s" % screen, 1)) features.append(("Item.name,%s" % ch_name, 1)) features.append(("All,0",1)) features.append(("Item.author,%s" % author, 1)) features.append(("Item.sversion,%s" % sversion, 1)) features.append(("Item.network,%s" % mnc, 1)) features.append(("Item.dgner,%s" % designer, 1)) features.append(("Item.icount,%s" % icon_count, 1)) features.append(("Item.stars,%s" % stars, 1)) features.append(("Item.comNum,%s" % comment_num,1)) features.append(("Item.font,%s" % font,1)) features.append(("Item.price,%s" % price,1)) features.append(("Item.fsize,%s" % file_size,1)) features.append(("Item.ischarge,%s" % ischarge,1)) features.append(("Item.downNum,%s" % dlnum,1)) ####User.Item and User.Item*Item idlist = hitopids[:-2].split(‘,‘) idCT = 0; for id in idlist: features.append(("User.Item*Item,%s" % id +‘*‘+hitop_id, 1)) idCT += 1 if idCT >= 3: #取每一个用户的前3个下载历史进行关联,因为用户量比较多,所以这里最后结果覆盖还是比较全的。 break; features.append(("User.phone*Item,%s" % device_name + ‘*‘ + hitop_id,1))#升维 features.append(("User.pay*Item.price,%s" % pay_ability + ‘*‘ + price,1)) # Output output = "%s\t%s" % (label, ",".join([ "%s:%d" % (f, v) for f, v in features ]))#这里join相当于是把list中的数据进行拆分,然后添加上分号。 print output
经过上述处理之后的数据如图所示:
特征工程部分前期准别结束。