大部分代码来自:https://github.com/luyishisi/tensorflow/tree/master/1.Cnn_Captcha
我改动了他最后输出层的激活函数和learning rate
先上代码:
gen_captha.py 用于生成图片
#coding:utf-8 from captcha.image import ImageCaptcha # pip install captcha import numpy as np import matplotlib.pyplot as plt from PIL import Image import random, time, os # 验证码中的字符, 就不用汉字了 number = [‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘] alphabet = [‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘, ‘k‘, ‘l‘, ‘m‘, ‘n‘, ‘o‘, ‘p‘, ‘q‘, ‘r‘, ‘s‘, ‘t‘, ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘] ALPHABET = [‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘, ‘H‘, ‘I‘, ‘J‘, ‘K‘, ‘L‘, ‘M‘, ‘N‘, ‘O‘, ‘P‘, ‘Q‘, ‘R‘, ‘S‘, ‘T‘, ‘U‘, ‘V‘, ‘W‘, ‘X‘, ‘Y‘, ‘Z‘] # 验证码一般都无视大小写;验证码长度4个字符 # 指定使用的验证码内容列表和长期 返回随机的验证码文本 #返回一个list,list里面是一个随机的四个字符 def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text def gen_captcha_text_and_image(): ‘‘‘生成字符对应的验证码‘‘‘ image = ImageCaptcha() #导入验证码包 生成一张空白图 captcha_text = random_captcha_text() # 随机一个验证码内容 captcha_text = ‘‘.join(captcha_text) # 类型转换为字符串这种方法可以记一下 #自动生成图片 captcha = image.generate(captcha_text) captcha_image = Image.open(captcha) #转换为图片格式 return captcha_text, captcha_image ‘‘‘ if __name__ == ‘__main__‘: # 测试 for k in range(500): text, image = gen_captcha_text_and_image() image.save(‘./image/‘ + text + ‘.png‘) #print gen_captcha_text_and_image() ‘‘‘
tenflow_cnn_train.py
#coding:utf-8 from gen_captcha import gen_captcha_text_and_image from gen_captcha import number from gen_captcha import alphabet from gen_captcha import ALPHABET import numpy as np import tensorflow as tf text, image = gen_captcha_text_and_image() print("验证码图像channel:", image.shape) # (60, 160, 3) # 图像大小 IMAGE_HEIGHT = 60 IMAGE_WIDTH = 160 MAX_CAPTCHA = len(text) print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用‘_‘补齐 # 把彩色图像转为灰度图像(色彩对识别验证码没有什么用) def convert2gray(img): if len(img.shape) > 2: gray = np.mean(img, -1) # 上面的转法较快,正规转法如下 # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray else: return img """ cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。 np.pad(image【,((2,3),(2,2)), ‘constant‘, constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行 """ # 文本转向量 char_set = number + alphabet + ALPHABET + [‘_‘] # 如果验证码长度小于4, ‘_‘用来补齐 CHAR_SET_LEN = len(char_set) def text2vec(text): text_len = len(text) if text_len > MAX_CAPTCHA: raise ValueError(‘验证码最长4个字符‘) vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN) #生成一个默认为0的向量 def char2pos(c): if c ==‘_‘: k = 62 return k k = ord(c)-48 if k > 9: k = ord(c) - 55 if k > 35: k = ord(c) - 61 if k > 61: raise ValueError(‘No Map‘) return k for i, c in enumerate(text): idx = i * CHAR_SET_LEN + char2pos(c) vector[idx] = 1 return vector # 向量转回文本 def vec2text(vec): char_pos = vec.nonzero()[0] text=[] for i, c in enumerate(char_pos): char_at_pos = i #c/63 char_idx = c % CHAR_SET_LEN if char_idx < 10: char_code = char_idx + ord(‘0‘) elif char_idx <36: char_code = char_idx - 10 + ord(‘A‘) elif char_idx < 62: char_code = char_idx- 36 + ord(‘a‘) elif char_idx == 62: char_code = ord(‘_‘) else: raise ValueError(‘error‘) text.append(chr(char_code)) return "".join(text) """ #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 vec = text2vec("F5Sd") text = vec2text(vec) print(text) # F5Sd vec = text2vec("SFd5") text = vec2text(vec) print(text) # SFd5 """ # 生成一个训练batchv 一个批次为 默认128 张图片 转换为向量 def get_next_batch(batch_size=128): batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH]) batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN]) # 有时生成图像大小不是(60, 160, 3) 反复获取验证码直到该验证码符合标准格式。 def wrap_gen_captcha_text_and_image(): while True: text, image = gen_captcha_text_and_image() if image.shape == (60, 160, 3): return text, image for i in range(batch_size): #获取图片,并灰度转换 text, image = wrap_gen_captcha_text_and_image() image = convert2gray(image) # flatten 图片一维化 以及对应的文字内容也一维化,形成一个128行每行一个图片及对应文本 batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0 batch_y[i,:] = text2vec(text) return batch_x, batch_y #################################################################### # 申请三个占位符 X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH]) Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN]) keep_prob = tf.placeholder(tf.float32) # dropout # 定义CNN def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # #w_c2_alpha = np.sqrt(2.0/(3*3*32)) #w_c3_alpha = np.sqrt(2.0/(3*3*64)) #w_d1_alpha = np.sqrt(2.0/(8*32*64)) #out_alpha = np.sqrt(2.0/1024) # 3 conv layer # 3 个 转换层 w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32])) b_c1 = tf.Variable(b_alpha*tf.random_normal([32])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding=‘SAME‘), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘) conv1 = tf.nn.dropout(conv1, keep_prob) w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64])) b_c2 = tf.Variable(b_alpha*tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding=‘SAME‘), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘) conv2 = tf.nn.dropout(conv2, keep_prob) w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64])) b_c3 = tf.Variable(b_alpha*tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding=‘SAME‘), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘) conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer # 最后连接层 w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64, 1024])) b_d = tf.Variable(b_alpha*tf.random_normal([1024])) dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) dense = tf.nn.dropout(dense, keep_prob) # 输出层 w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN])) b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN])) out = tf.add(tf.matmul(dense, w_out), b_out) #out = tf.nn.softmax(out) return out # 训练 def train_crack_captcha_cnn(): output = crack_captcha_cnn() # loss 损失数值 # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate 应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) print(step, loss_) # 每100 step计算一次准确率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print(step, acc) # 如果准确率大于50%,保存模型,完成训练 if acc > 0.5: saver.save(sess, "crack_capcha.model", global_step=step) break step += 1 def crack_captcha(captcha_image): output = crack_captcha_cnn() saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(‘.‘)) predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1}) text = text_list[0].tolist() vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN) i = 0 for n in text: vector[i*CHAR_SET_LEN + n] = 1 i += 1 return vec2text(vector) if __name__ == ‘__main__‘: text, image = gen_captcha_text_and_image() image = convert2gray(image) #生成一张新图 image = image.flatten() / 255 # 将图片一维化 predict_text = crack_captcha(image) #导入模型识别 print("正确: {} 预测: {}".format(text, predict_text)) #train_crack_captcha_cnn()
然后就是训练了
在以0.001的learningrate训练时出现了loss越学习越大的情况
将其改为0.0001即可
初始化时loss为0.5,准确率为0.01-0.02
之后训练了余额4000次(2h)后loss为0.3,准确率为0.3
然后就出现了loss突然变为nan的情况