最近英文版的访问特别慢,转战中文吧
和上一题一样,递归会超时
//63 不同路径2,递归解法 int uniquePaths2(vector<vector<int>>& obstacleGrid, int m,int n) { if ((m == 1 && n == 2) || (m == 2 && n == 1) || (m == 1 && n == 1)) { if (obstacleGrid[obstacleGrid.size() - 1][obstacleGrid[0].size() - 1] == 0) return 1; else return 0; } int p1 = 0; int p2 = 0; //获得向下走的总数,当下面的数为1或者是到了最底层,向下的总数为0 if (m == 1 || obstacleGrid[m-2][n-1] == 1 ) p1 = 0; else p1 = uniquePaths2(obstacleGrid,m-1,n); //向右 if (n == 1 || obstacleGrid[m -1 ][n - 2] == 1 ) p2 = 0; else p2 = uniquePaths2(obstacleGrid, m, n - 1); return p1 + p2; } int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { if (obstacleGrid[0][0] == 1) return 0; return uniquePaths2(obstacleGrid,obstacleGrid.size(),obstacleGrid[0].size()); }
使用数组可以通过,和上题相比,这题思路就更直接,但是效率比之前更低一点,使用的result和题目所给的格子大小一样,从右下向左上遍历,更加清晰,就是需要额外处理终点
//非递归解法 int uniquePathsWithObstacles2(vector<vector<int>>& obstacleGrid) { /*if (obstacleGrid[0][0] == 1 || obstacleGrid[obstacleGrid.size() - 1][obstacleGrid[0].size() - 1]) return 0;*/ vector<vector<int>> result(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0)); for (int i = obstacleGrid.size() - 1; i >= 0; i--) { for (int j = obstacleGrid[0].size() - 1; j >= 0; j--) { if (obstacleGrid[i][j] == 1) { result[i][j] = 0; continue; } if (i == obstacleGrid.size() - 1 && j == obstacleGrid[0].size() - 1) { result[i][j] = 1; continue; } int p1 = 0; int p2 = 0; //如果是下部有位置 if (i != obstacleGrid.size() - 1) p1 = result[i + 1][j]; //如果是右边有位置 if (j != obstacleGrid[0].size() - 1) p2 = result[i][j + 1]; result[i][j] = p1 + p2 ; } } return result[0][0]; }