码迷,mamicode.com
首页 > 其他好文 > 详细

【Coursera】因子分析模型

时间:2018-04-03 14:27:28      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:元素   post   协方差矩阵   方程组   构造   坐标轴   变换   均值   二维   

一、协方差矩阵

协方差矩阵为对称矩阵。

在高斯分布中,方差越大,数据分布越分散,方差越小发,数据分布越集中。

在协方差矩阵中,假设矩阵为二维,若第二维的方差大于第一维的方差,则在图像上的体现就是:高斯分布呈现一个椭圆形,且主轴对应的就是方差大的第二维度。简而言之,若对角线元素相等,则高斯分布的图形是圆形,反之则分布图形为椭圆形。

若协方差矩阵的非对角元素为0,则高斯分布图形平行于坐标轴,反之则不平行。

  • 为什么当样本数量远小于特征向量的维数n时,协方差逆矩阵不存在(矩阵不满秩)?
  • 在多变量高斯分布中,协方差矩阵和均值刻画了每个维度的特征,n维可以理解为有n个未知量,每一个样本可以构造一个等式,如果样本数量小于未知量n,那么这个n元方程组将无法求解。
  • 此外,在多变量高斯分布中,公式里包含了协方差矩阵的行列式和逆矩阵,如果不满秩,则公式无法表达。
  • 为什么限制了协方差矩阵为对角矩阵,那么高斯分布的形状就会和坐标轴平行?
  • 限制协方差矩阵为对角矩阵,意味着不同维度之间的协方差为0,则会使得模型丢失了不同维度之间的相关性。

二、因子分析模型

  • 为什么因子分析模型可以解决样本数量少于特征维度n的问题?
  • 假设对于某个问题,有m个n维的样本数据,若m小于n,则协方差矩阵就不可逆,高斯分布的公式也无法得解,而在因子分析模型中,将n维的数据视为由d维(d < n)的变量经过一定的变换得到的,从而降低了问题的维度,使得m > n。(个人理解,不一定对
  • 假设可以解释为:每个点x都是由d维正态随机变量z生成。

【Coursera】因子分析模型

标签:元素   post   协方差矩阵   方程组   构造   坐标轴   变换   均值   二维   

原文地址:https://www.cnblogs.com/CSLaker/p/8707732.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!