码迷,mamicode.com
首页 > 其他好文 > 详细

决策树

时间:2018-04-03 15:27:48      阅读:283      评论:0      收藏:0      [点我收藏+]

标签:统计   show   运行   衡量   一起   图片   album   net   属性   

以下关于决策树的内容来自网络,都是非常通俗易懂的。

一.GBDT简介

       GBDT(Gradient Boosting Decision Tree) 是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终结果。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

       GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等。

二.相关基础知识

2.1决策树

决策树分为两大类,分类树和回归树。分类树是我们比较熟悉的决策树,比如C4.5分类决策树。分类树用于分类标签值,如晴天/阴天、用户性别、网页是否是垃圾页面。而回 归树用于预测实数值,如明天的温度、用户的年龄、网页的相关程度。也就是分类树的输出是定性的,而回归树的输出是定量的。

GBDT的核心在于累加所有树的结果作为最终结果,比如对年龄的累加来预测年龄,而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,不是分类树。

2.1.1 分类树

以C4.5分类树为例,C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1),按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,则以多数人的性别作为该叶子节点的性别。

2.1.2 回归树

回归树总体流程也是类似,区别在于,回归树的每个节点(不一定是叶子节点)都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化均方差即(每个人的年龄-预测年龄)^2 的总和 / N。也就是被预测出错的人数越多,错的越离谱,均方差就越大,通过最小化均方差能够找到最可靠的分枝依据。分枝直到每个叶子节点上人的年龄都唯一或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。

 

 决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路:
给出如下的一组数据,一共有十个样本(学生数量),每个样本有分数,出勤率,回答问题次数,作业提交率四个属性,最后判断这些学生是否是好学生。最后一列给出了人工分类结果。
技术分享图片
       然后用这一组附带分类结果的样本可以训练出多种多样的决策树,这里为了简化过程,我们假设决策树为二叉树,且类似于下图:
       技术分享图片

通过学习上表的数据,可以A,B,C,D,E的具体值,而A,B,C,D,E则称为阈值。当然也可以有和上图完全不同的树形,比如下图这种的:
                技术分享图片
 
  所以决策树的生成主要分以下两步,这两步通常通过学习已经知道分类结果的样本来实现。
  1. 节点的分裂:一般当一个节点所代表的属性无法给出判断时,则选择将这一节点分成2个
      子  节点(如不是二叉树的情况会分成n个子节点)
  2. 阈值的确定:选择适当的阈值使得分类错误率最小 (Training Error)。
 
  比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。下面介绍具体步骤。
  ID3: 由增熵(Entrophy)原理来决定那个做父节点,那个节点需要分裂。对于一组数据,熵越大说明分类结果越好。
  比如上表中的4个属性:单一地通过以下语句分类:
  1. 分数小于70为【不是好学生】:分错1个
  2. 出勤率大于70为【好学生】:分错3个
  3. 问题回答次数大于9为【好学生】:分错2个
  4. 作业提交率大于80%为【好学生】:分错2个
  最后发现  分数小于70为【不是好学生】这条分错最少,也就是熵最大,所以应该选择这条为父节点进行树的生成,当然分数也可以选择大于71,大于72等等,出勤率也可以选择小于60,65等等,总之会有很多类似上述1~4的条件,最后选择分类错最少即熵最大的那个条件。而当分裂父节点时道理也一样,分裂有很多选择,针对每一个选择,与分裂前的分类错误率比较,留下那个提高最大的选择,即熵增益最大的选择。
 
C4.5:通过对ID3的学习可以知道ID3存在一个问题,那就是越细小的分割分类错误率越小,所以ID3会越分越细,比如以第一个属性为例:设阈值小于70可将样本分为2组,但是分错了1个。如果设阈值小于70,再加上阈值等于95,那么分错率降到了0,但是这种分割显然只对训练数据有用,对于新的数据没有意义,这就是所说的过度学习(Overfitting)。分割太细了,训练数据的分类可以达到0错误率,但是因为新的数据和训练数据不同,所以面对新的数据分错率反倒上升了。决策树是通过分析训练数据,得到数据的统计信息,而不是专为训练数据量身定做。就比如给男人做衣服,叫来10个人做参考,做出一件10个人都能穿的衣服,然后叫来另外5个和前面10个人身高差不多的,这件衣服也能穿。但是当你为10个人每人做一件正好合身的衣服,那么这10件衣服除了那个量身定做的人,别人都穿不了。所以为了避免分割太细,c4.5对ID3进行了改进,C4.5中,增加的熵要除以分割太细的代价,这个比值叫做信息增益率,显然分割太细分母增加,信息增益率会降低。除此之外,其他的原理和ID3相同。
 
CART:分类回归树
CART是一个二叉树,也是回归树,同时也是分类树,CART的构成简单明了。
CART只能将一个父节点分为2个子节点。CART用GINI指数来决定如何分裂:

      GINI指数:总体内包含的类别越杂乱,GINI指数就越大(跟熵的概念很相似)。

a. 比如出勤率大于70%这个条件将训练数据分成两组:大于70%里面有两类:【好学生】和【不是好学生】,而小于等于70%里也有两类:【好学生】和【不是好学生】。
b. 如果用分数小于70分来分:则小于70分只有【不是好学生】一类,而大于等于70分有【好学生】和【不是好学生】两类。
比较a和b,发现b的凌乱程度比a要小,即GINI指数b比a小,所以选择b的方案。以此为例,将所有条件列出来,选择GINI指数最小的方案,这个和熵的概念很类似。
CART还是一个回归树,回归解析用来决定分布是否终止。理想地说每一个叶节点里都只有一个类别时分类应该停止,但是很多数据并不容易完全划分,或者完全划分需要很多次分裂,必然造成很长的运行时间,所以CART可以对每个叶节点里的数据分析其均值方差,当方差小于一定值可以终止分裂,以换取计算成本的降低。
CART和ID3一样,存在偏向细小分割,即过度学习(过度拟合的问题),为了解决这一问题,对特别长的树进行剪枝处理,直接剪掉。
 
以上的决策树训练的时候,一般会采取Cross-Validation法:比如一共有10组数据:
第一次.  1到9做训练数据, 10做测试数据
第二次.  2到10做训练数据,1做测试数据
第三次. 1,3到10做训练数据,2做测试数据,以此类推
做10次,然后大平均错误率。这样称为 10 folds Cross-Validation。
比如 3 folds Cross-Validation 指的是数据分3份,2份做训练,1份做测试。

引用:http://blog.sina.com.cn/s/blog_73ff91640102xd13.html 、http://blog.sina.com.cn/s/blog_1584387c90102x5q3.html   感谢作者

 

决策树

标签:统计   show   运行   衡量   一起   图片   album   net   属性   

原文地址:https://www.cnblogs.com/1023linlin/p/8708568.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!