Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7] key = 3 5 / 3 6 / \ 2 4 7 Given key to delete is 3. So we find the node with value 3 and delete it. One valid answer is [5,4,6,2,null,null,7], shown in the following BST. 5 / 4 6 / 2 7 Another valid answer is [5,2,6,null,4,null,7]. 5 / 2 6 \ 4 7
解题思路:删除二叉查找树上的节点,要考虑到几种情况:
1)待删除的节点包含有左,右子树,那删除的时候,要找到后继节点,这个后继节点只可能在删除节点的右子树找。
2)待删除的节点只包含有一个子树,直接拿父亲节点与删除节点的子节点相连
3)待删除节点是叶节点,那原来相连的节点就得赋为空
1 #include <stdio.h> 2 3 struct TreeNode { 4 int val; 5 TreeNode *left; 6 TreeNode *right; 7 TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 }; 9 10 TreeNode* BST_search(TreeNode *node, int value, TreeNode *&parent){ 11 while(node){ 12 if (node->val == value){ 13 break; 14 } 15 parent = node; 16 if (value < node->val){ 17 node = node->left; 18 } 19 else{ 20 node = node->right; 21 } 22 } 23 return node; 24 } 25 26 void delete_node(TreeNode *parent, TreeNode *node){ 27 if (node->val < parent->val){ 28 if (node->left && !node->right){ 29 parent->left = node->left; 30 } 31 else if (!node->left && node->right){ 32 parent->left = node->right; 33 } 34 else{ 35 parent->left = NULL; 36 } 37 } 38 else if(node->val > parent->val){ 39 if (node->left && !node->right){ 40 parent->right = node->left; 41 } 42 else if (!node->left && node->right){ 43 parent->right = node->right; 44 } 45 else{ 46 parent->right = NULL; 47 } 48 } 49 } 50 51 TreeNode* find_successor(TreeNode *node, TreeNode *&parent){ 52 parent = node; 53 TreeNode *ptr = node->right; 54 while(ptr->left){ 55 parent = ptr; 56 ptr = ptr->left; 57 } 58 return ptr; 59 } 60 61 class Solution { 62 public: 63 TreeNode* deleteNode(TreeNode* root, int key) { 64 TreeNode *parent = NULL; 65 TreeNode *node = BST_search(root, key, parent); 66 if (!node){ 67 return root; 68 } 69 if (node->left && node->right){ 70 TreeNode *successor = find_successor(node, parent); 71 delete_node(parent, successor); 72 node->val = successor->val; 73 return root; 74 } 75 if (parent){ 76 delete_node(parent, node); 77 return root; 78 } 79 if (node->left){ 80 root = node->left; 81 } 82 else{ 83 root = node->right; 84 } 85 return root; 86 } 87 }; 88 89 void preorder_print(TreeNode *node,int layer){ 90 if (!node){ 91 return; 92 } 93 for (int i = 0; i < layer; i++){ 94 printf("-----"); 95 } 96 printf("[%d]\n", node->val); 97 preorder_print(node->left, layer + 1); 98 preorder_print(node->right, layer + 1); 99 } 100 101 int main(){ 102 for (int i = 1; i <= 7; i++){ 103 printf("key = %d\n", i); 104 TreeNode a(5); 105 TreeNode b(3); 106 TreeNode c(6); 107 TreeNode d(2); 108 TreeNode e(4); 109 TreeNode f(7); 110 a.left = &b; 111 a.right = &c; 112 b.left = &d; 113 b.right = &e; 114 c.right = &f; 115 Solution solve; 116 TreeNode *root = solve.deleteNode(&a, i); 117 preorder_print(root, 0); 118 printf("\n"); 119 } 120 return 0; 121 }