码迷,mamicode.com
首页 > 其他好文 > 详细

Numpy数据的操作 * dot() multiply() 的区别

时间:2018-04-07 17:48:14      阅读:1340      评论:0      收藏:0      [点我收藏+]

标签:adc   官方文档   大小   href   support   article   不同   ted   where   

 

使用numpy时,跟matlab不同:

1、* dot() multiply()

对于array来说,* 和 dot()运算不同

*是每个元素对应相乘

dot()是矩阵乘法

对于matrix来说,* 和 multiply() 运算不同

* 是矩阵乘法

multiply()  是每个元素对应相乘

 

A B为array   MA MB为matrix

multiply(MA, MB)对应元素相乘

dot(MA, MB)矩阵乘法

 

注意:对应元素相乘时,矩阵大小必须相同;矩阵相乘时,矩阵大小要满足矩阵相乘要求。

 
 
 

dot运算

numpy官方文档上所写:

  • 如果 a和 b都是 1-D arrays,它的作用是计算内积。(不进行复共轭)
>>> np.dot(3, 4)
12
>>> np.dot([2j, 3+3j], [2j, 3j])
(-13+9j)
  • 如果 a和 b是 2-D arrays, 作用是矩阵的乘积, a和 b的维数要满足矩阵乘积维数要求,此时推荐使用 matmul或 a @ b
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
       [2, 2]])
  • 如果 a或 b是 0-D (标量), 等价于 multiply,推荐使用 numpy.multiply(a, b)或 a * b
  • 如果 a是 N-D array 且 b是 1-D array, 作用是在a和 b的最后一个轴上进行sum product运算。
>>> a = array([[[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.]]])
>>> b = np.array([1,2,3,4])
>>>np.dot(a, b)

array([[ 30.,  70., 110.],
       [ 30.,  70., 110.]])
  • 如果a是 N-D array 且 b是 M-D array (M>=2), 作用是在a的最后一个轴上和b的倒数第二个轴上进行sum product,即 :
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

*运算

对于ndarray, * 作用的是进行element-wise乘积,必要时需要broadcast,作用同np.multipy

>>> a = np.array(range(6)).reshape((2,3))                                                                                                                                                                     
>>> b = np.array([1,0,1])
>>> a
array([[0, 1, 2],
       [3, 4, 5]])
>>> b
array([1, 0, 1])
>>> c= a*b
>>> c
array([[0, 0, 2],
       [3, 0, 5]])
>>> d = a*b.T
>>> d
array([[0, 0, 2],
       [3, 0, 5]])

而对于matrix,* 则表示矩阵相乘,运算必须保证矩阵相乘的法则:

>>> A=np.matrix(a)
>>> B=np.matrix(b)
>>> A
matrix([[0, 1, 2],
        [3, 4, 5]])
>>> B
matrix([[1, 0, 1]])
>>> C=A*B
ValueError: shapes (2,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
#维数不匹配
>>> C=A*B.T
>>> C
matrix([[2],
        [8]])

multiply运算

函数原型是

numpy.multiply(x1, x2, /, out=None, *, where=True, casting=‘same_kind‘, order=‘K‘, dtype=None, subok=True[, signature, extobj]) = <ufunc ‘multiply‘>

Returns:
y : ndarray
x1 和 x2的element-wise乘积,保证x1和x2有相同的维数,或者进行broadcast之后两者有相同的维数

>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])
#要进行broadcast
 



 

Numpy数据的操作 * dot() multiply() 的区别

标签:adc   官方文档   大小   href   support   article   不同   ted   where   

原文地址:https://www.cnblogs.com/AlvinSui/p/8733470.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!