标签:表示 max names clu std pre problem oid algorithm
传送门:http://poj.org/problem?id=2253
参考:https://www.cnblogs.com/lienus/p/4273159.html
题意:给出一个无向图,求一条从 1 到 2 的路径,使得路径上的最大边权最小;
思路:
dij将距离更新改成取最大值即可,即dis[i]表示到达i点过程中的最大边权,更新后可能多个,再靠优先队列取出最小的最大边权。
#include <iostream> #include <queue> #include <cstdio> #include <vector> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define pb push_back #define fi first #define se second typedef long long ll; const ll INF = 1e9+9 ; const int maxn = 1006 ; ll n, m, k, s; double dis[maxn]; bool vis[maxn]; vector < pair<ll, double > > mp[maxn]; priority_queue< pair<double ,ll > > q; struct node { int x,y; }ac[300]; double omyway(int i,int j) { node a = ac[i],b = ac[j]; return sqrt( 1.0*(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y) ); } void dij(){ memset(vis,0,sizeof(vis)); while(!q.empty()) { int v = q.top().se; q.pop(); if(vis[v])continue; vis[v] = 1; for(int i=0;i<mp[v].size();i++) { int tmp = mp[v][i].fi; double tmpc = mp[v][i].se; if(dis[tmp] > max(dis[v],tmpc)) { dis[tmp] = max(dis[v] , tmpc); q.push(make_pair(-1.0*dis[tmp],tmp)); } } } } int main(){ int cnt = 1; while(~scanf("%lld", &n) && n) { for(int i = 0; i < maxn; i ++) mp[i].clear(), dis[i]=INF; for(int i=1; i<=n; i++) { int x,y; scanf("%d%d",&x,&y); ac[i].x=x; ac[i].y=y; } for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) { double tmp = omyway(i,j); mp[i].push_back(make_pair(j,tmp)); mp[j].push_back(make_pair(i,tmp)); } } dis[1] = 0.0; q.push(make_pair(0.0,1)); dij(); printf("Scenario #%d\n",cnt++); printf("Frog Distance = %.3f\n\n",dis[2]); } return 0; }
标签:表示 max names clu std pre problem oid algorithm
原文地址:https://www.cnblogs.com/ckxkexing/p/8747108.html