码迷,mamicode.com
首页 > 其他好文 > 详细

sklearn之交叉检验1

时间:2018-04-09 18:48:22      阅读:157      评论:0      收藏:0      [点我收藏+]

标签:技术分享   调用   ase   http   分享   selection   .com   回归   soc   

#下面是只是普通的,仅一次
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

iris = load_iris()
X = iris.data
y = iris.target

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=4)
knn = KNeighborsClassifier(n_neighbors=5)#附近点的5个值
knn.fit(X_train,y_train)
print(knn.score(X_test,y_test))

技术分享图片

#下面开始交叉检验
#调用形式为:sklearn.cross_validation.cross_val_score
from sklearn.cross_validation import cross_val_score
knn = KNeighborsClassifier(n_neighbors=5)
#socring是判断准确度的方法
scores = sklearn.cross_validation.cross_val_score(knn,X,y,cv=5,scoring=accuracy)
#如果是回归的话,scoring=‘mean_squared_error‘,判断误差,要在前面加负号,
#即loss = -sklearn.cross_validation.cross_val_score(knn,X,y,cv=5,scoring=‘mean_squared_error‘)
print(scores)
#有两组到了100的境界,cv指的是分成几个set
#我们可以把它们平均一下
print(scores.mean())

技术分享图片

#现在我想看一下,n_neighbors为多少对结果有什么影响
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
k_range = (1,31)
k_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = sklearn.cross_validation.cross_val_score(knn,X,y,cv=10,scoring=accuracy)
    k_scores.append(scores.mean())

plt.plot(k_range,k_scores)
plt.xlabel(Value of K for KNN)
plt.ylabel(Cross-Validated Accuracy)
plt.show()

技术分享图片

 

 感觉上面这个线怪怪的啊,我得想一想。。。。。

 

sklearn之交叉检验1

标签:技术分享   调用   ase   http   分享   selection   .com   回归   soc   

原文地址:https://www.cnblogs.com/annebang/p/8761390.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!