码迷,mamicode.com
首页 > 其他好文 > 详细

UR 2 密码锁

时间:2018-04-09 23:06:56      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:stdout   inline   fpm   mem   集合   git   type   pen   枚举   

\[UR\ \ 2 密码锁\]

  • \(myy\)的题
  • 然而考场上只会\(O(3^N)\)的算法还因为时间问题只写了\(O(3^N*N)\)然后就被\(32\)位机卡常了只有\(26\)分,还搞得另外两个题没检查都爆零了,myy:你们是我见过最差的一届
  • 自己垃圾无话可说
  • 部分分可以参考竞赛图求\(SCC\)的那种套路来做,就是先设一个什么\(f[s]\)表示集合\(s\)\(SCC\)的概率,然后用一个类似背包的东西枚举子集来转移(其实这个做法有点强行套上一道以前的题没有考虑本题的性质
  • 然而有更加优美的\(O(2^N*N^2)\)的做法,能够发现竞赛图缩点后一定形如一条链,考虑对链上的每一条边计数,为了方便可以假设最后一个点之后也会连着一条链,所以我们可以\(O(2^N)\)枚举链的前缀,然后这个前缀要全部向剩余的点连边,算一下概率,最后加在一起
  • 考虑进一步优化上面的算法,发现我们一个大小为\(M\)的没有特殊的边的集合成为一个前缀的概率是\((\frac{1}{2})^{M*(N-M)}\),每加入一条特殊的边就是乘上\(2p\),考虑对大小为M的集合一起处理,最后一起乘以\((\frac{1}{2})^{M*(N-M)}\)就好了,然后其实我并不会第\(4\)\(SubTask\)就直接讲正解吧,边的贡献可以直接枚举连通块来算,然后把每些边组成的联通块先用\(dp\)算出来在取这个集合时边的贡献,然后用背包合在一起,最后一起乘上那个\(2\)的多少次幂即可,因为边数很小,所以连通块的点数也很小,可以通过
#include <bits/stdc++.h>

typedef long long LL;

inline int read(int Num = 0, int Flag = 1)
{
    char ch = getchar();
    for (; !isdigit(ch); ch = getchar()) 
        if (ch == ‘-‘)
            Flag = -1;
    for (;  isdigit(ch); ch = getchar())
        Num = Num * 10 + ch - ‘0‘;
    return Num *= Flag;
}

template <typename T> bool chkmax(T &a, T b) { return a < b? a = b, true : false; }
template <typename T> bool chkmin(T &a, T b) { return a > b? a = b, true : false; }

const int MAXN = 50 + 5;
const int mod = 998244353;
const int base = 1e4;

int fpm(int x, int e)
{
    int ret = 1;
    for (; e; e >>= 1) {
        if (e & 1) 
            ret = (LL)ret * x % mod;
        x = (LL)x * x % mod;
    }
    return ret;
}

int N, M, mul_num;

std::vector<int> G[MAXN];
int from[MAXN], to[MAXN], p[MAXN];

int size, tot;
int id[MAXN], occur[MAXN];

void DFS_work(int u, int tot)
{
    id[u] = size ++;
    occur[u] = tot;
    for (int i = 0; i < (int)G[u].size(); ++i) {
        int v = G[u][i];
        if (id[v] < 0) DFS_work(v, tot);
    }
}

int sum[MAXN][MAXN];
int dp[MAXN][MAXN];

int main()
{
    freopen("random.in", "r", stdin);
    freopen("random.out", "w", stdout);

    N = read(), M = read();
    mul_num = fpm(base, N * (N-1));

    for (int i = 1; i <= M; ++i) {
        int u = read(), v = read(), w = read();

        G[u].push_back(v);
        G[v].push_back(u);
        from[i] = u, to[i] = v;
        p[i] = (LL)w * fpm(base, mod - 2) % mod;
    }

    int allblock_size = 0;

    memset(id, -1, sizeof id);
    for (int i = 1; i <= N; ++i) {
        if (id[i] >= 0) continue;

        size = 0;
        tot ++;
        DFS_work(i, tot);
        allblock_size += size;

        for (int s = 0; s < 1<<size; ++s) {
            int coe = 1;
            for (int j = 1; j <= M; ++j) {
                if (occur[from[j]] == tot && (((s >> id[from[j]]) ^ (s >> id[to[j]])) & 1)) {
                    coe = coe * 2 % mod;
                    coe = (LL)coe * ((s >> id[from[j]]) & 1? p[j] : mod + 1 - p[j]) % mod;
                }
            }
            int bit = __builtin_popcount(s);
            sum[tot][bit] = (sum[tot][bit] + coe) % mod;
        }
    }

    dp[0][0] = 1;
    for (int i = 0; i < tot; ++i) {
        for (int j = 0; j <= N; ++j) {
            for (int k = 0; k + j <= N; ++k)
                dp[i+1][j+k] = (dp[i+1][j+k] + (LL)dp[i][j] * sum[i + 1][k] % mod) % mod;
        }
    }

    int ans = 0;

    assert(allblock_size == N);
    for (int i = 1; i <= N; ++i) {
        ans = (ans + (LL)dp[tot][i] * fpm((mod + 1) / 2, i * (N-i)) % mod) % mod;
    }

    printf("%lld\n", (LL)ans * mul_num % mod);

    return 0;
}

UR 2 密码锁

标签:stdout   inline   fpm   mem   集合   git   type   pen   枚举   

原文地址:https://www.cnblogs.com/pbvrvnq/p/8763202.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!