mapreduce java 代码
package org.apache.hadoop.studyhdfs.mapredce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* @author zhangyy
*
*/
public class WordCountMapReduce extends Configured implements Tool{
// step 1: mapper class
/**
* public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
*/
public static class WordCountMapper extends //
Mapper<LongWritable,Text,Text,IntWritable>{
// map output value
private final static IntWritable mapOutputValue = new IntWritable(1) ;
// map output key
private Text mapOutputKey = new Text();
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
System.out.println("map-input-key =" + key + " : map-input-value = " + value);
// line value
String lineValue = value.toString();
// split
String[] strs = lineValue.split(" ") ;
// iterator
for(String str: strs){
// set map output key
mapOutputKey.set(str);
// output
context.write(mapOutputKey, mapOutputValue);
}
}
}
// step 2: reducer class
/**
* public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
*/
public static class WordCountReducer extends //
Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable outputValue = new IntWritable() ;
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
// temp: sum
int sum = 0 ;
// iterator
for(IntWritable value: values){
// total
sum += value.get() ;
}
// set output value
outputValue.set(sum);
// output
context.write(key, outputValue);
}
}
// step 3: driver
public int run(String[] args) throws Exception {
// 1: get configuration
// Configuration configuration = new Configuration();
Configuration configuration = super.getConf() ;
// 2: create job
Job job = Job.getInstance(//
configuration, //
this.getClass().getSimpleName()//
);
job.setJarByClass(this.getClass());
// 3: set job
// input -> map -> reduce -> output
// 3.1: input
Path inPath = new Path(args[0]) ;
FileInputFormat.addInputPath(job, inPath);
// 3.2: mapper
job.setMapperClass(WordCountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// ===========================Shuffle======================================
// 1) partitioner
// job.setPartitionerClass(cls);
// 2) sort
// job.setSortComparatorClass(cls);
// 3) combine
job.setCombinerClass(WordCountReducer.class);
// 4) compress
// set by configuration
// 5) group
// job.setGroupingComparatorClass(cls);
// ===========================Shuffle======================================
// 3.3: reducer
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// set reducer number
// job.setNumReduceTasks(3);
// 3.4: output
Path outPath = new Path(args[1]);
FileOutputFormat.setOutputPath(job, outPath);
// 4: submit job
boolean isSuccess = job.waitForCompletion(true);
return isSuccess ? 0 : 1 ;
}
public static void main(String[] args) throws Exception {
// run job
// int status = new WordCountMapReduce().run(args);
// 1: get configuration
Configuration configuration = new Configuration();
// ===============================Compress===================================
// configuration.set("mapreduce.map.output.compress", "true");
// configuration.set(name, value);
// ===============================Compress===================================
int status = ToolRunner.run(//
configuration, //
new WordCountMapReduce(), //
args
) ;
// exit program
System.exit(status);
}
}
原文地址:http://blog.51cto.com/flyfish225/2096593