码迷,mamicode.com
首页 > 其他好文 > 详细

学习笔记--Spark

时间:2018-04-14 00:36:26      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:创建   数据集   格式   1.3   来源   ons   增加   code   处理   

参考来源:http://www.yiibai.com/spark/

概述
Apache Spark是一个集群计算设计的快速计算。它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理。Spark的主要特征是其内存集群计算,增加的应用程序的处理速度。

三种部署方法:

  • 单机版 ? Spark独立部署是指Spark占据在HDFS之上(Hadoop分布式文件系统)并将空间分配给HDFS。在这里,Spark和MapReduce将并列覆盖所有Spark的作业集群。
  • Hadoop Yarn ? Hadoop Yarn部署方式,简单地说,spark运行在Yarn没有任何必要预安装或使用root访问权限。它有助于Spark融入Hadoop生态系统和Hadoop堆栈。它允许在其它部件叠上层的顶部上运行。
  • Spark 在MapReduce (SIMR) ? Spark在MapReduce的用于启动spark作业,除了独立部署。通过SIMR,用户可以启动Spark和使用Shell,而不需要任何管理权限。

Spark RDD
弹性分布式数据集(RDD)是Spark的基本数据结构。它是对象的不可变的分布式集合。在RDD中每个数据集被划分成逻辑分区,这可能是在群集中的不同节点上计算的。RDDS可以包含任何类型,如:Python,Java,或者Scala的对象,包括用户定义的类。

安装
按顺序安装Java、Scala、Spark

Spark核心编程
创建简单RDD
Spark容器会自动创建Spark 上下文对象名为sc

$ spark-shell
scala> val inputfile = sc.textFile(“input.txt”)

RDD转换
S.No | 转换&含义
--------|----------------
1 | map(func) 返回一个新的分布式数据集,传递源的每个元素形成通过一个函数 func
2 | filter(func) 返回由选择在func返回true,源元素组成了一个新的数据集
3 | flatMap(func) 类似映射,但每个输入项目可以被映射到0以上输出项目(所以func应返回seq而不是单一的项目)
4 | mapPartitions(func) 类似映射,只不过是单独的每个分区(块)上运行RDD,因此 func 的类型必须是Iterator

动作
S.No | 操作 & 含义
--------|---------------------
1 | reduce(func) 合计数据集的元素,使用函数 func (其中有两个参数和返回一行). 该函数应该是可交换和可结合,以便它可以正确地在并行计算。
2 | collect() 返回数据集的所有作为数组在驱动程序的元素。这是一个过滤器或其它操作之后返回数据的一个足够小的子集,通常是有用的
3 | count() 返回该数据集的元素数
4 | first() 返回的数据集的第一个元素(类似于使用(1))
5 | take(n) 返回与该数据集的前n个元素的阵列。
6 | takeSample (withReplacement,num, [seed]) 返回数组的数据集num个元素,有或没有更换随机抽样,预指定的随机数发生器的种子可选
7 | takeOrdered(n, [ordering]) 返回RDD使用或者按其自然顺序或自定义比较的前第n个元素
8 | saveAsTextFile(path) 写入数据集是一个文本文件中的元素(或一组文本文件),在给定的目录的本地文件系统,HDFS或任何其他的Hadoop支持的文件系统。Spark调用每个元素的 toString,将其转换为文件中的文本行
9 | saveAsSequenceFile(path) (Java and Scala) 写入数据集,为Hadoop SequenceFile元素在给定的路径写入在本地文件系统,HDFS或任何其他Hadoop支持的文件系统。 这是适用于实现Hadoop可写接口RDDS的键 - 值对。在Scala中,它也可以在属于隐式转换为可写(Spark包括转换为基本类型,如 Int, Double, String 等等)类型。
10 | saveAsObjectFile(path) (Java and Scala) 写入数据集的内容使用Java序列化为一个简单的格式,然后可以使用SparkContext.objectFile()加载。
11 | countByKey() 仅适用于RDDS的类型 (K, V). 返回(K, Int)对与每个键的次数的一个HashMap。
12 | foreach(func) 数据集的每个元素上运行函数func。这通常对于不良反应,例如更新累加器或与外部存储系统进行交互进行。

示例程序

//打开Spark-Shell
$ spark-shell 
//创建一个RDD
scala> val inputfile = sc.textFile("input.txt")
//执行字数转换
scala> val counts = inputfile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_);
//当前RDD
scala> counts.toDebugString
//缓存转换
scala> counts.cache()
//应用动作
scala> counts.saveAsTextFile("output")

Spark部署
Spark应用程序使用spark-submit(shell命令)来部署在集群中的Spark应用程序
示例:
SparkWordCount.scala

import org.apache.spark.SparkContext 
import org.apache.spark.SparkContext._ 
import org.apache.spark._  

object SparkWordCount { 
  def main(args: Array[String]) { 

      val sc = new SparkContext( "local", "Word Count", "/usr/local/spark", Nil, Map(), Map()) 
        
      /* local = master URL; Word Count = application name; */  
      /* /usr/local/spark = Spark Home; Nil = jars; Map = environment */ 
      /* Map = variables to work nodes */ 
      /*creating an inputRDD to read text file (in.txt) through Spark context*/ 
      val input = sc.textFile("in.txt") 
      /* Transform the inputRDD into countRDD */ 
        
      valcount = input.flatMap(line ? line.split(" ")) 
      .map(word ? (word, 1)) 
      .reduceByKey(_ + _) 
      
      /* saveAsTextFile method is an action that effects on the RDD */  
      count.saveAsTextFile("outfile") 
      System.out.println("OK"); 
  } 
}  

步骤:
1、下载Spark Ja
下载spark-core_2.10-1.3.0.jar
2、编译程序

$ scalac -classpath "spark-core_2.10-1.3.0.jar:/usr/local/spark/lib/spark-assembly-1.4.0-hadoop2.6.0.jar" SparkPi.scala 

3、创建JAR

jar -cvf wordcount.jar SparkWordCount*.class spark-core_2.10-1.3.0.jar/usr/local/spark/lib/spark-assembly-1.4.0-hadoop2.6.0.jar

4、提交spark应用

spark-submit --class SparkWordCount --master local wordcount.jar 

学习笔记--Spark

标签:创建   数据集   格式   1.3   来源   ons   增加   code   处理   

原文地址:https://www.cnblogs.com/kioluo/p/8824788.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!