码迷,mamicode.com
首页 > 其他好文 > 详细

欧拉函数

时间:2018-04-14 12:31:01      阅读:179      评论:0      收藏:0      [点我收藏+]

标签:com   函数   href   证明   pac   cpp   target   pre   标准   

我们规定φ(p)表示1~p-1中与p互质的数的个数,规定φ(1)=1。

有以下性质:

1.当p为素数是φ(p)=p-1

2.设m>1,(a,m)=1,则:

aφ(m)≡1(mod m). (欧拉定理)

3.设p为素数,(a,p)=1,则:

ap-1≡1(mod p).(费马小定理)

4.若i mod p==0(即p | i),那么φ(i*p)=φ(i)*p

5.若i mod p!=0,那么φ(i*p)=φ(i)*(p-1)

//限于篇幅,均不证明

那么我们该如何计算φ呢?暴力?显然是不行的。

1.若(m1,m2)=1,则φ(m1*m2)=φ(m1)*φ(m2)

2.由上面的定理可以推得φ的计算公式:

设n>1且其标准分解式为n=p1a1*p2a2*p3a3...pkak,则:
φ(n)=n*(1-1/p1)(1-1/p2)(1-1/p3)...(1-1/pk).

我们可能需要写程序来计算φ,我们考虑在线筛的同时求解。

求解方法利用了性质1,4,5.

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
bool b[100010];
int n,prime[100010],total,phi[100010];
int main()
{
	scanf("%d",&n);
	b[0]=b[1]=1;
	phi[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!b[i])
		{
			prime[++total]=i;
			phi[i]=i-1;//性质1 
		}
		for(int j=1;j<=total;j++)
		{
			if(i*prime[j]>n)break;
			b[i*prime[j]]=1;
			if(i%prime[j]==0)
			{
				phi[i*prime[j]]=phi[i]*prime[j];//性质4 
				break;
			}
			else
			phi[i*prime[j]]=phi[i]*(prime[j]-1);//性质5 
		}
	}
	for(int i=1;i<=n;i++)printf("%d ",phi[i]);
}

  

欧拉函数

标签:com   函数   href   证明   pac   cpp   target   pre   标准   

原文地址:https://www.cnblogs.com/zzh666/p/8830928.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!