标签:class [1] highlight .sh 数据 超过 numpy 就是 nump
>>> x = np.array([[1,2,3],[4,5,6]]) >>> x.shape (2, 3) >>> np.expand_dims(x, 0) array([[[1, 2, 3], [4, 5, 6]]]) >>> np.expand_dims(x, 1) array([[[1, 2, 3]], [[4, 5, 6]]]) >>> np.expand_dims(x, 2) array([[[1], [2], [3]], [[4], [5], [6]]]) >>> np.expand_dims(x, 3) array([[[1], [2], [3]], [[4], [5], [6]]]) >>> np.expand_dims(x, 4) array([[[1], [2], [3]], [[4], [5], [6]]]) >>> np.expand_dims(x, 1).shape (2, 1, 3) >>> np.expand_dims(x, 2).shape (2, 3, 1) >>> np.expand_dims(x, 3).shape (2, 3, 1) >>> np.expand_dims(x, 4).shape (2, 3, 1) >>> np.expand_dims(x, 0).shape (1, 2, 3)
1. 分3部分来看。
2. expand_dims直观来说就是将某一维度展成1维,看shape的形式便可知。
3. 哪一维要设置成1,就将原始DATA重新组合,细心看输出的数据的重排形式。
4. 维度从0开始,超过都表示最后一维,-1也是最后一维。
标签:class [1] highlight .sh 数据 超过 numpy 就是 nump
原文地址:https://www.cnblogs.com/alexYuin/p/8849526.html