标签:examples int can cout not hat mes more define
Discription
Given a simple graph, output the number of simple cycles in it. A simple cycle is a cycle with no repeated vertices or edges.
Input
The first line of input contains two integers n and m (1?≤?n?≤?19, 0?≤?m) – respectively the number of vertices and edges of the graph. Each of the subsequent mlines contains two integers a and b, (1?≤?a,?b?≤?n, a?≠?b) indicating that vertices aand b are connected by an undirected edge. There is no more than one edge connecting any pair of vertices.
Output
Output the number of cycles in the given graph.
Examples
4 6
1 2
1 3
1 4
2 3
2 4
3 4
7
Note
The example graph is a clique and contains four cycles of length 3 and three cycles of length 4.
好像是很经典的一个问题呢。。。
状压dp,设 f[S][i] 为 从S的二进制最低位作为起点, 且经过S集合中的点,目前走到i的路径种类。我们转移的时候枚举的点的编号 都必须大于 S的二进制最低位,这样就可以避免重复计算了。
然后因为一个环会被正反走两次,所以最后还要除以2。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=600005;
int ci[35],n,m;
bool v[35][35];
ll ans,f[maxn][20];
inline void solve(){
for(int i=0;i<n;i++) f[ci[i]][i]=1;
for(int S=1,now;S<ci[n];S++){
now=S&-S;
for(int i=0;i<n;i++) if(ci[i]==now){
now=i;
break;
}
for(int i=0;i<n;i++) if(f[S][i]){
if(v[now][i]) ans+=f[S][i];
for(int j=now+1;j<n;j++) if(!(ci[j]&S)&&v[i][j]) f[S|ci[j]][j]+=f[S][i];
}
}
ans=(ans-m)>>1;
}
int main(){
ci[0]=1;
for(int i=1;i<=20;i++) ci[i]=ci[i-1]<<1;
int uu,vv;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&uu,&vv),uu--,vv--;
v[uu][vv]=v[vv][uu]=1;
}
solve();
cout<<ans<<endl;
return 0;
}
CodeForces - 11D A Simple Task
标签:examples int can cout not hat mes more define
原文地址:https://www.cnblogs.com/JYYHH/p/8867197.html