码迷,mamicode.com
首页 > 其他好文 > 详细

Lecture 1: The Learning Problem

时间:2018-04-17 20:51:17      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:图片   空间   向量   测试   ima   rman   等级   put   精确   

前言

机器学习:理论与实践相结合的学问
基础导向:哲学解释,关键理论,核心技术,实践应用...

1.什么是机器学习

人类学习的方式:观察 -> 学习 -> 技巧
机器学习的方式:data -> ML ->skill

什么是技巧?
技巧 <=> 某种性能或者表现的提高(比如预测的精确度)
ML learning:
data -> ML -> improve performance measure (三个关键)
an alternative route to build complicated systems (机器自己去分析数据)

使用机器学习的三个关键:

  • 存在一些可被学习的潜在模式 (performance measure can be improved)
  • 不知道如何定义这些规则 (ML)
  • 有数据 (data)

2.机器学习的应用

机器学习在衣食住行上的应用:
衣:推荐搭配
食:预测在某家餐厅食物中毒的概率
住:预测房屋的耗能状况
行:无人驾驶

在教育上的应用:
data:线上测试答题的系统,历史答题记录
skill:预测学生是否能答对题目
ML solution:
学习出学生的等级 题目的等级 来进行预测

在娱乐上的应用:
推荐系统
ML solution:
user描述为一个特征向量
movie也描述为一个特征向量
user和movie做內积(简单的计算)
user-movie 对应一个 rating
通过rating 反推回去 学习到user和movie的特征向量
学习好所有user和movie的特征向量后
预测user没有看过的movie的rating

3.机器学习的组成

技术分享图片

机器学习的模型 = 算法(\(A\)) + 假设空间 (\(H\))

技术分享图片

4.机器学习及其他领域

ML和DM
机器学习:利用数据计算出近似于目标 \(f\) 的 假设 \(g\)
数据挖掘:利用大数据找出对有用或者有趣的性质

if “有用的性质” same as “近似于目标 \(f\) 的 假设 \(g\)”:
DM = ML
if “有用的性质” related to “近似于目标 \(f\) 的 假设 \(g\)”:
DM 互相帮助 ML
传统的DM在大数据集上能进行有效的计算

DM和ML密不可分

ML和AI
人工智能:compute something that shows intelligent behavior
ML是实现AI的一种方式

ML和Statistics
统计:利用数据推断出未知的过程
统计能被应用于实现ML

Summary

技术分享图片

Lecture 1: The Learning Problem

标签:图片   空间   向量   测试   ima   rman   等级   put   精确   

原文地址:https://www.cnblogs.com/forlenia/p/8869398.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!