码迷,mamicode.com
首页 > 其他好文 > 详细

《用户网络行为画像》读书笔记(一)

时间:2018-04-19 13:56:07      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:面向   技术   进一步   大量   标签   重要   如何   读书笔记   维度   

推荐就是发掘用户集合和对象集合的语义关系,为用户提供语义最相关的 TOP-N 对象集合。

语义关系就是能读懂用户偏好兴趣的核心。

推荐系统是面向具体业务的交叉研究,无业务讲推荐系统,感觉言之无物;从技术来讲,不同的数据、不同的场景就会有不同的结果;

用户画像粒度如何控制?

是给一群人打上文艺男的标签,还是直接给单个人打上文艺微胖男或者文艺知性女的标签? 标签间的关系是什么?

如用户每个时段的观影 稳定性 定量 是多少

用户画像更倾向于对同一类用户进行不同维度的刻画,对同一个电商的买家进行用户画像设计,就是将买家进一步细分和具象,如闲逛型用户、收藏型用户、比价型

用户、购买型用户等。

 

静态画像:用户注册等基本属性信息。可用于基于人口统计学的推荐,

动态画像:丰富的大量的用户行为日志。兴趣模型:推荐系统通常会部署特定的模块来捕捉用户的观影习惯、记录用户观影记录,

从数据的角度看,用户画像就是一个对原始数据二次计算重构后的新数据,对计算增加了负担,对存储也增加了负担。所以一开始必须经过逻辑设计,从而才能确定数据结构方面的设计。

 

用户的一次观影行为包括人物、时间、地点、事件等要素。每一次的用户观影行为本质上是一次随机事件,可以描述为:什么用户,在什么时间,在什么地点,观看了什
么电影。“什么用户”涉及对用户的标识;时间则包括两个重要信息,时间戳与时间跨度,其中,时间戳标识用户行为的发生点,时间跨度则标识了用户行为的持续时间,地
点体现了用户观影的渠道,便于做推荐结果的推送。

 

 

 

《用户网络行为画像》读书笔记(一)

标签:面向   技术   进一步   大量   标签   重要   如何   读书笔记   维度   

原文地址:https://www.cnblogs.com/quietwalk/p/8880854.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!