码迷,mamicode.com
首页 > 其他好文 > 详细

Spark学习之路 (二)Spark2.3 HA集群的分布式安装

时间:2018-04-20 22:00:16      阅读:634      评论:0      收藏:0      [点我收藏+]

标签:$path   json   mem   ash   alt   tun   立即生效   pts   3.0   

一、下载Spark安装包

1、从官网下载

http://spark.apache.org/downloads.html

技术分享图片

2、从微软的镜像站下载

http://mirrors.hust.edu.cn/apache/

3、从清华的镜像站下载

https://mirrors.tuna.tsinghua.edu.cn/apache/

二、安装基础

1、Java8安装成功

2、zookeeper安装成功

3、hadoop2.7.5 HA安装成功

4、Scala安装成功(不安装进程也可以启动)

 

三、Spark安装过程

 1、上传并解压缩

[hadoop@hadoop1 ~]$ ls
apps     data      exam        inithive.conf  movie     spark-2.3.0-bin-hadoop2.7.tgz  udf.jar
cookies  data.txt  executions  json.txt       projects  student                        zookeeper.out
course   emp       hive.sql    log            sougou    temp
[hadoop@hadoop1 ~]$ tar -zxvf spark-2.3.0-bin-hadoop2.7.tgz -C apps/

2、为安装包创建一个软连接

[hadoop@hadoop1 ~]$ cd apps/
[hadoop@hadoop1 apps]$ ls
hadoop-2.7.5  hbase-1.2.6  spark-2.3.0-bin-hadoop2.7  zookeeper-3.4.10  zookeeper.out
[hadoop@hadoop1 apps]$ ln -s spark-2.3.0-bin-hadoop2.7/ spark
[hadoop@hadoop1 apps]$ ll
总用量 36
drwxr-xr-x. 10 hadoop hadoop  4096 3月  23 20:29 hadoop-2.7.5
drwxrwxr-x.  7 hadoop hadoop  4096 3月  29 13:15 hbase-1.2.6
lrwxrwxrwx.  1 hadoop hadoop    26 4月  20 13:48 spark -> spark-2.3.0-bin-hadoop2.7/
drwxr-xr-x. 13 hadoop hadoop  4096 2月  23 03:42 spark-2.3.0-bin-hadoop2.7
drwxr-xr-x. 10 hadoop hadoop  4096 3月  23 2017 zookeeper-3.4.10
-rw-rw-r--.  1 hadoop hadoop 17559 3月  29 13:37 zookeeper.out
[hadoop@hadoop1 apps]$ 

3、进入spark/conf修改配置文件

(1)进入配置文件所在目录

[hadoop@hadoop1 ~]$ cd apps/spark/conf/
[hadoop@hadoop1 conf]$ ll
总用量 36
-rw-r--r--. 1 hadoop hadoop  996 2月  23 03:42 docker.properties.template
-rw-r--r--. 1 hadoop hadoop 1105 2月  23 03:42 fairscheduler.xml.template
-rw-r--r--. 1 hadoop hadoop 2025 2月  23 03:42 log4j.properties.template
-rw-r--r--. 1 hadoop hadoop 7801 2月  23 03:42 metrics.properties.template
-rw-r--r--. 1 hadoop hadoop  865 2月  23 03:42 slaves.template
-rw-r--r--. 1 hadoop hadoop 1292 2月  23 03:42 spark-defaults.conf.template
-rwxr-xr-x. 1 hadoop hadoop 4221 2月  23 03:42 spark-env.sh.template
[hadoop@hadoop1 conf]$ 

(2)复制spark-env.sh.template并重命名为spark-env.sh,并在文件最后添加配置内容

[hadoop@hadoop1 conf]$ cp spark-env.sh.template spark-env.sh
[hadoop@hadoop1 conf]$ vi spark-env.sh
export JAVA_HOME=/usr/local/jdk1.8.0_73
#export SCALA_HOME=/usr/share/scala
export HADOOP_HOME=/home/hadoop/apps/hadoop-2.7.5
export HADOOP_CONF_DIR=/home/hadoop/apps/hadoop-2.7.5/etc/hadoop
export SPARK_LOCAL_IP=192.168.123.102
export SPARK_WORKER_MEMORY=500m
export SPARK_WORKER_CORES=1
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181 -Dspark.deploy.zookeeper.dir=/spark"

注:

#export SPARK_MASTER_IP=hadoop1  这个配置要注释掉。 
集群搭建时配置的spark参数可能和现在的不一样,主要是考虑个人电脑配置问题,如果memory配置太大,机器运行很慢。 
说明: 
-Dspark.deploy.recoveryMode=ZOOKEEPER    #说明整个集群状态是通过zookeeper来维护的,整个集群状态的恢复也是通过zookeeper来维护的。就是说用zookeeper做了spark的HA配置,Master(Active)挂掉的话,Master(standby)要想变成Master(Active)的话,Master(Standby)就要像zookeeper读取整个集群状态信息,然后进行恢复所有Worker和Driver的状态信息,和所有的Application状态信息; 
-Dspark.deploy.zookeeper.url=hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181#将所有配置了zookeeper,并且在这台机器上有可能做master(Active)的机器都配置进来;(我用了4台,就配置了4台) 

-Dspark.deploy.zookeeper.dir=/spark 
这里的dir和zookeeper配置文件zoo.cfg中的dataDir的区别??? 
-Dspark.deploy.zookeeper.dir是保存spark的元数据,保存了spark的作业运行状态; 
zookeeper会保存spark集群的所有的状态信息,包括所有的Workers信息,所有的Applactions信息,所有的Driver信息,如果集群 

(3)复制slaves.template成slaves

[hadoop@hadoop1 conf]$ cp slaves.template slaves
[hadoop@hadoop1 conf]$ vi slaves

添加如下内容

hadoop1
hadoop2
hadoop3
hadoop4

(4)将安装包分发给其他节点

[hadoop@hadoop1 ~]$ cd apps/
[hadoop@hadoop1 apps]$ scp -r spark-2.3.0-bin-hadoop2.7/ hadoop2:$PWD
[hadoop@hadoop1 apps]$ scp -r spark-2.3.0-bin-hadoop2.7/ hadoop3:$PWD
[hadoop@hadoop1 apps]$ scp -r spark-2.3.0-bin-hadoop2.7/ hadoop4:$PWD

创建软连接

[hadoop@hadoop2 ~]$ cd apps/
[hadoop@hadoop2 apps]$ ls
hadoop-2.7.5  hbase-1.2.6  spark-2.3.0-bin-hadoop2.7  zookeeper-3.4.10
[hadoop@hadoop2 apps]$ ln -s spark-2.3.0-bin-hadoop2.7/ spark
[hadoop@hadoop2 apps]$ ll
总用量 16
drwxr-xr-x 10 hadoop hadoop 4096 3月  23 20:29 hadoop-2.7.5
drwxrwxr-x  7 hadoop hadoop 4096 3月  29 13:15 hbase-1.2.6
lrwxrwxrwx  1 hadoop hadoop   26 4月  20 19:26 spark -> spark-2.3.0-bin-hadoop2.7/
drwxr-xr-x 13 hadoop hadoop 4096 4月  20 19:24 spark-2.3.0-bin-hadoop2.7
drwxr-xr-x 10 hadoop hadoop 4096 3月  21 19:31 zookeeper-3.4.10
[hadoop@hadoop2 apps]$ 

4、配置环境变量

所有节点均要配置

[hadoop@hadoop1 spark]$ vi ~/.bashrc 
#Spark
export SPARK_HOME=/home/hadoop/apps/spark
export PATH=$PATH:$SPARK_HOME/bin

保存并使其立即生效

[hadoop@hadoop1 spark]$ source ~/.bashrc 

四、启动

1、先启动zookeeper集群

所有节点均要执行

[hadoop@hadoop1 ~]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop1 ~]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[hadoop@hadoop1 ~]$ 

2、在启动HDFS集群

任意一个节点执行即可

[hadoop@hadoop1 ~]$ start-dfs.sh

3、在启动Spark集群

在一个节点上执行

[hadoop@hadoop1 ~]$ cd apps/spark/sbin/
[hadoop@hadoop1 sbin]$ start-all.sh

4、查看进程

技术分享图片

技术分享图片

技术分享图片

技术分享图片

5、问题

查看进程发现spark集群只有hadoop1成功启动了Master进程,其他3个节点均没有启动成功,需要手动启动,进入到/home/hadoop/apps/spark/sbin目录下执行以下命令,3个节点都要执行

[hadoop@hadoop2 ~]$ cd ~/apps/spark/sbin/
[hadoop@hadoop2 sbin]$ start-master.sh 

6、执行之后再次查看进程

Master进程和Worker进程都以启动成功

技术分享图片

技术分享图片

技术分享图片

五、验证

1、查看Web界面Master状态

hadoop1是ALIVE状态,hadoop2、hadoop3和hadoop4均是STANDBY状态

hadoop1节点

技术分享图片

hadoop2节点

技术分享图片

hadoop3

技术分享图片

hadoop4

技术分享图片

2、验证HA的高可用

手动干掉hadoop1上面的Master进程,观察是否会自动进行切换

技术分享图片

干掉hadoop1上的Master进程之后,再次查看web界面

hadoo1节点,由于Master进程被干掉,所以界面无法访问

技术分享图片

hadoop2节点,Master被干掉之后,hadoop2节点上的Master成功篡位成功,成为ALIVE状态

技术分享图片

hadoop3节点

技术分享图片

hadoop4节点

技术分享图片

 

Spark学习之路 (二)Spark2.3 HA集群的分布式安装

标签:$path   json   mem   ash   alt   tun   立即生效   pts   3.0   

原文地址:https://www.cnblogs.com/qingyunzong/p/8888080.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!