码迷,mamicode.com
首页 > 其他好文 > 详细

FTRL(Follow The Regularized Leader)学习总结

时间:2018-04-21 19:46:50      阅读:774      评论:0      收藏:0      [点我收藏+]

标签:特点   code   tar   数据   摘要   特性   技术   info   训练   

摘要:

  1.算法概述

  2.算法要点与推导

  3.算法特性及优缺点

  4.注意事项

  5.实现和具体例子

  6.适用场合

内容:

  1.算法概述

  FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法,方便实用,而且效果很好,常用于更新在线的CTR预估模型;

  FTRL算法兼顾了FOBOSRDA两种算法的优势,既能同FOBOS保证比较高的精度,又能在损失一定精度的情况下产生更好的稀疏性。

  FTRL在处理带非光滑正则项(如L1正则)的凸优化问题上表现非常出色,不仅可以通过L1正则控制模型的稀疏度,而且收敛速度快;

  2.算法要点与推导

  技术分享图片

  3.算法特性及优缺点

   算法特点:

   在线学习,实时性高;可以处理大规模稀疏数据;有大规模模型参数训练能力;根据不同的特征特征学习率

   缺点:

     

  4.注意事项

  5.实现和具体例子

    FTRL处理“Springleaf Marketing Response”数据

    Spark Streaming on Angel FTRL

  6.适用场合

    点击率模型

FTRL(Follow The Regularized Leader)学习总结

标签:特点   code   tar   数据   摘要   特性   技术   info   训练   

原文地址:https://www.cnblogs.com/arachis/p/FTRL.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!