标签:解决 代码 统一 scanf 合并 void 就会 div pre
之前写过FFT的笔记. 我们知道FFT是在复数域上进行的变换.
而且经过数学家的证明, DFT是复数域上唯一满足循环卷积性质的变换.
而我们在OI中, 经常遇到对xxxx取模的题目, 这就启发我们可不可以在模运算的意义下找一个这样的变换.
然后我们发现有个神奇的东西, 原根\(g\), 这东西在模意义下相当于单位复根\(-e^{\frac{2\pi i}{n}}\).
所以我们预处理一下\(g\)的幂和逆元, 然后改一下fft的代码就出现了快速数论变换ntt
懒得写了 直接上代码:
void getwn(){ //预处理原根的幂和逆元
int x=qpow(3,p-2);
for(int i=0;i<20;++i){
wn[i]=qpow(3,(p-1)/(1<<i));
inv[i]=qpow(x,(p-1)/(1<<i));
}
}
void ntt(int *y,bool f){ rev(y); //翻转代码和fft无异
for(int m=2,id=1;m<=n;m<<=1,++id){ //id用来记录转到第几下了
for(int k=0;k<n;k+=m){
int w=1,wm=f?wn[id]:inv[id]; //如果是dft就用幂, idft就用幂的逆元
for(int j=0;j<m/2;++j){
//这里跟fft一样, 不过要对p取模
int u=y[k+j]%p,t=1ll*w*y[k+j+m/2]%p;
y[k+j]=u+t; if(y[k+j]>p) y[k+j]-=p;
y[k+j+m/2]=u-t; if(y[k+j+m/2]<0) y[k+j+m/2]+=p;
w=1ll*w*wm%p;
}
}
}
if(!f){
int x=qpow(n,p-2);
for(int i=0;i<n;++i)
y[i]=1ll*y[i]*x%p;
}
}
好像差不多呢~ 不过这样就要求我们找一个原根好求的数. 比如著名的uoj数: 998244353 还有1004535809和469762049等, 这三个数原根都是3~
好像因为当时一看到模数不是1e9+7一般就会想到ntt, vfk为了防止这一点, 模数统一采用998244353, 现在看看收效不错.
不过 有些丧心病狂的人就是要用1e9+7作为ntt的模数, 甚至还出现了可以不模质数的情况!
那我们怎么解决任意模数ntt呢? 我们可以采用拆系数ntt或者三模数ntt. 这里介绍一下三模数ntt.
对于一般的数据范围, \(n\leq10^5, a_i\leq10^9\), 这样可能会到10^5*10^{9^2}=10^{23}级别.
所以我们可以找三个乘积\(>10^{23}\)的ntt-friendly的数, 然后分别ntt再想办法合并.
我们假如答案是ans, 那我们做三次ntt后就能得到如下三个柿子.
\[
\left\{\begin{matrix}
ans\equiv a_1(\mod m_1)\\
ans\equiv a_2(\mod m_2)\\
ans\equiv a_3(\mod m_3)
\end{matrix}\right.
\]
我们把前两个柿子通过中国剩余定理合并, 就可以得到
\[
\left\{\begin{matrix}
ans\equiv A(\mod M)\\
ans\equiv a_3(\mod m_3)
\end{matrix}\right.
\]
其中, \(M=m_1*m_2\)
这样我们设\(ans=kM+A\),
\[
kM+A\equiv a_3(\mod m_3) \k=(a_3-A)*M^{-1} (\mod m_3)
\]
这样我们求出\(k\)然后代回到\(ans=kM+A\)就可以求对任意模数取模的结果了.
中国剩余定理合并的时候直接乘是可以爆long long的, 所以我们要用到\(O(1)\)快速乘~
下面上一波代码: luogu4245 【模板】MTT
哎呀觉得自己码风有点丑啊qwq
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=600020,p0=469762049,p1=998244353,p2=1004535809;
const LL M=1ll*p0*p1;
int wn[20],nw[20],rev[N],n,lg,p;
int qpow(int a,int b,int p,int s=1){
for(;b;b>>=1,a=1ll*a*a%p)
if(b&1) s=1ll*s*a%p;
return s;
}
LL mul(LL a,LL b,LL p){ a%=p; b%=p;
return (a*b-(LL)((long double)a*b/p)*p+p)%p;
}
void calcw(int p){
int x=qpow(3,p-2,p);
for(int i=0;i<20;++i){
wn[i]=qpow(3,(p-1)/(1<<i),p);
nw[i]=qpow(x,(p-1)/(1<<i),p);
}
}
void init(){
for(int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)<<lg);
}
void ntt(int *y,bool f,int p){ calcw(p);
for(int i=0;i<n;++i) if(i<rev[i]) std::swap(y[i],y[rev[i]]);
for(int m=2,id=1;m<=n;m<<=1,++id){
for(int k=0;k<n;k+=m){
int w=1,wm=f?wn[id]:nw[id];
for(int j=0;j<m>>1;++j){
int &a=y[k+j]; int &b=y[k+j+m/2];
int u=a%p,t=1ll*w*b%p;
a=u+t; if(a>p) a-=p;
b=u-t; if(b<0) b+=p;
w=1ll*w*wm%p;
}
}
} int x=qpow(n,p-2,p);
if(!f) for(int i=0;i<n;++i) y[i]=1ll*y[i]*x%p;
}
char c1[N],c2[N]; int a[N],b[N],c[N],d[N],ans[3][N];
int main(){
int l1,l2; scanf("%d%d%d",&l1,&l2,&p);
for(int i=0;i<=l1;++i) scanf("%d",&a[i]),a[i]%=p;
for(int i=0;i<=l2;++i) scanf("%d",&b[i]),b[i]%=p;
for(n=1;n<l1||n<l2;n<<=1,++lg); n<<=1; init();
std::copy(a,a+n,c); std::copy(b,b+n,d);
ntt(c,1,p0); ntt(d,1,p0);
for(int i=0;i<n;++i) ans[0][i]=1ll*c[i]*d[i]%p0;
std::copy(a,a+n,c); std::copy(b,b+n,d);
ntt(c,1,p1); ntt(d,1,p1);
for(int i=0;i<n;++i) ans[1][i]=1ll*c[i]*d[i]%p1;
std::copy(a,a+n,c); std::copy(b,b+n,d);
ntt(c,1,p2); ntt(d,1,p2);
for(int i=0;i<n;++i) ans[2][i]=1ll*c[i]*d[i]%p2;
ntt(ans[0],0,p0); ntt(ans[1],0,p1); ntt(ans[2],0,p2);
for(int i=0;i<n;++i){
LL A=mul(1ll*ans[0][i]*p1%M,qpow(p1%p0,p0-2,p0),M)
+mul(1ll*ans[1][i]*p0%M,qpow(p0%p1,p1-2,p1),M);
if(A>M) A-=M;
LL k=((ans[2][i]-A)%p2+p2)%p2*qpow(M%p2,p2-2,p2)%p2;
a[i]=1ll*(k%p)*(M%p)%p+A%p;
if(a[i]>p) a[i]-=p;
}
for(int i=0;i<=l1+l2;++i) printf("%d ",a[i]);
}
标签:解决 代码 统一 scanf 合并 void 就会 div pre
原文地址:https://www.cnblogs.com/enzymii/p/8925992.html