码迷,mamicode.com
首页 > 其他好文 > 详细

【刷题】洛谷 P2664 树上游戏

时间:2018-04-24 20:22:46      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:temp   dfs   load   ons   get   main   输出   const   答案   

题目描述

lrb有一棵树,树的每个节点有个颜色。给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量。以及

技术分享图片

现在他想让你求出所有的sum[i]

输入输出格式

输入格式:

第一行为一个整数n,表示树节点的数量

第二行为n个整数,分别表示n个节点的颜色c[1],c[2]……c[n]

接下来n-1行,每行为两个整数x,y,表示x和y之间有一条边

输出格式:

输出n行,第i行为sum[i]

输入输出样例

输入样例#1:

5
1 2 3 2 3
1 2
2 3
2 4
1 5

输出样例#1:

10
9
11
9
12

说明

sum[1]=s(1,1)+s(1,2)+s(1,3)+s(1,4)+s(1,5)=1+2+3+2+2=10
sum[2]=s(2,1)+s(2,2)+s(2,3)+s(2,4)+s(2,5)=2+1+2+1+3=9
sum[3]=s(3,1)+s(3,2)+s(3,3)+s(3,4)+s(3,5)=3+2+1+2+3=11
sum[4]=s(4,1)+s(4,2)+s(4,3)+s(4,4)+s(4,5)=2+1+2+1+3=9
sum[5]=s(5,1)+s(5,2)+s(5,3)+s(5,4)+s(5,5)=2+3+3+3+1=12

对于40%的数据,n<=2000

对于100%的数据,1<=n,c[i]<=10^5

题解

用的点分治做
这道题我看题解都看了很久啊
nyg和zlt用虚树做的,于是我就只能默默地一个人看点分的做法
首先看找到分治中心后看怎么算根的答案,因为点对中一个点一定是根,所以就是求每个点到根的路径上有多少个不同的颜色;然后把计算答案的方法变一下,把统计点的贡献变成统计颜色的贡献
那么如果一个点的颜色是在这个点到根的路径上第一次出现,那么这个颜色就可以对答案贡献当前点的size大小贡献(因为点对中另一个点只要是这个点的子树中的点,那么由于会经过当前点,而这个点的颜色又是第一次出现,那么肯定每个点对的贡献都会加1,那么对于这个颜色来说,就会加size贡献)
\(colvl[x]\) 代表颜色 \(x\) 的贡献,\(allval\) 就是统计 \(colvl\) 的和
那么根的答案就直接为 \(allval\)
由于分治算的答案都是必经过根的,所以我们接着会发现开始我们统计的 \(colvl[i]\) 同样使用于除根外的其它点 \(x\) ,但要保证 \(x\) 到根的路径上不能出现 \(i\) 的颜色,并且同一子树中的点不能对其颜色有贡献,这不就是点分不去重的搞法吗
然后就好了
每次找完root后,dfs一遍算 \(colvl\)\(allval\),然后把根的贡献搞出来
然后枚举每一个子树,dfs一遍把当前的子树的贡献去掉,再dfs一遍把去掉贡献的子树的答案算一下,最后dfs一遍把去掉的贡献加回来
点分治就做完了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10,inf=0x3f3f3f3f;
int n,col[MAXN],e,to[MAXN<<1],nex[MAXN<<1],beg[MAXN],Msonsize[MAXN],size[MAXN],root,colnt[MAXN],finish[MAXN];
ll allval,colvl[MAXN],ans[MAXN];
template<typename T> inline void read(T &x)
{
    T data=0,w=1;
    char ch=0;
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
    if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
    to[++e]=y;
    nex[e]=beg[x];
    beg[x]=e;
}
inline void getroot(int x,int f,int total)
{
    Msonsize[x]=0;size[x]=1;
    for(register int i=beg[x];i;i=nex[i])
        if(to[i]==f||finish[to[i]])continue;
        else
        {
            getroot(to[i],x,total);
            size[x]+=size[to[i]];
            chkmax(Msonsize[x],size[to[i]]);
        }
    chkmax(Msonsize[x],total-size[x]);
    if(Msonsize[x]<Msonsize[root])root=x;
}
inline void dfs1(int x,int f)
{
    colnt[col[x]]++;
    size[x]=1;
    for(register int i=beg[x];i;i=nex[i])
        if(to[i]==f||finish[to[i]])continue;
        else dfs1(to[i],x),size[x]+=size[to[i]];
    if(colnt[col[x]]==1)
    {
        allval+=size[x];
        colvl[col[x]]+=size[x];
    }
    colnt[col[x]]--;
}
inline void dfs2(int x,int f,int k)
{
    colnt[col[x]]++;
    for(register int i=beg[x];i;i=nex[i])
        if(to[i]==f||finish[to[i]])continue;
        else dfs2(to[i],x,k);
    if(colnt[col[x]]==1)
    {
        allval+=k*size[x];
        colvl[col[x]]+=k*size[x];
    }
    colnt[col[x]]--;
}
inline void dfs3(int x,int f,int other,int colnm)
{
    colnt[col[x]]++;
    if(colnt[col[x]]==1)allval-=colvl[col[x]],colnm++;
    ans[x]+=(ll)allval+(ll)colnm*other;
    for(register int i=beg[x];i;i=nex[i])
        if(to[i]==f||finish[to[i]])continue;
        else dfs3(to[i],x,other,colnm);
    if(colnt[col[x]]==1)allval+=colvl[col[x]],colnm--;
    colnt[col[x]]--;
}
inline void clear(int x,int f)
{
    colnt[col[x]]=colvl[col[x]]=0;
    for(register int i=beg[x];i;i=nex[i])
        if(to[i]==f||finish[to[i]])continue;
        else clear(to[i],x);
}
inline void calc(int x)
{
    allval=0;
    dfs1(x,0);
    ans[x]+=allval;
    for(register int i=beg[x];i;i=nex[i])
        if(!finish[to[i]])
        {
            colnt[col[x]]++;
            allval-=size[to[i]];
            colvl[col[x]]-=size[to[i]];
            dfs2(to[i],x,-1);
            colnt[col[x]]--;
            dfs3(to[i],x,size[x]-size[to[i]],0);    
            colnt[col[x]]++;
            allval+=size[to[i]];
            colvl[col[x]]+=size[to[i]];
            dfs2(to[i],x,1);
            colnt[col[x]]--;
        }
    clear(x,0);
}
inline void solve(int x)
{
    calc(x);
    finish[x]=1;
    for(register int i=beg[x];i;i=nex[i])
        if(!finish[to[i]])
        {
            root=0;
            getroot(to[i],x,size[to[i]]);
            solve(root);
        }
}
int main()
{
    read(n);
    for(register int i=1;i<=n;++i)read(col[i]);
    for(register int i=1;i<n;++i)
    {
        int u,v;
        read(u);read(v);
        insert(u,v);insert(v,u);
    }
    Msonsize[0]=inf;
    getroot(1,0,n);
    solve(root);
    for(register int i=1;i<=n;++i)write(ans[i],'\n');
    return 0;
}

【刷题】洛谷 P2664 树上游戏

标签:temp   dfs   load   ons   get   main   输出   const   答案   

原文地址:https://www.cnblogs.com/hongyj/p/8932940.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!