码迷,mamicode.com
首页 > 其他好文 > 详细

代写Haskell程序 汉诺塔、汉诺塔编程代码代写

时间:2018-04-24 21:46:40      阅读:228      评论:0      收藏:0      [点我收藏+]

标签:coding   min   compute   通讯   distance   learning   ram   api   ida   

Homework #7: Computational

All computations should be done in this notebook using the R kernel. Working in small groups is allowed, but it is

important that you make an effort to master the material and hand in your own work.

You will be required to submit this notebook, fully compiled with your solutions,

as an HTML or ipynb file to Canvas by 2pm on Friday, March 23.

Problem 1

Load into R. A description of the variables can be obtained from page 73 of

(a) Calculate the 85% confidence interval for the mean of a galaxy‘s distance

from Earth in Mega parsecs in R by doing the computation explicitly.

(b) Can you find a built in R function that does this computation automatically?

(c) Interpret the confidence interval.

Problem 2

Simulate confidence intervals for a population proportion

(using the confidence interval formula that we derived in class). Use this

simulation to justify the interpretation of this confidence interval.

1.03643338949379

Problem 3

We might be interested in computing confidence intervals for parameters other than a mean, , proportion,

, etc. For many of these parameters, standard statistical theory will not help. In this problem, we will

compute a 95% confidence interval for the rate parameter of an exponential distribution.

A theoretical model suggests that , the time to breakdown of an insulating fluid between electrodes at a

particular voltage, has an exponential distribution: . A random sample of breakdown

times (minutes) is given here:

(a) Construct a matrix of rows, where each row is a sample of size 10

(sampled with replacement) from the above 10 numbers. (HINT: use the sample

m = 1000

qnorm(0.85)

ci(m, confidence= 0.85,alpha = 1‐confidence)

function in R.)

(b) From each of the samples, compute a reasonable estimate of (HINT: How

is related to the mean of an exponential?). Call this estimator .

(c) You now have a sample from the distribution of the estimator . Construct a

histogram and comment on the distribution.

(d) Use the quantile function in R to find the 2.5 percentile and the 97.5

percentile. This is a bootstrap confidence interval for .

 

本团队核心人员组成主要包括硅谷工程师、BAT一线工程师,国内Top5硕士、博士生,精通德英语!我们主要业务范围是代做编程大作业、课程设计等等。

 

我们的方向领域:window编程 数值算法 AI人工智能 金融统计 计量分析 大数据 网络编程 WEB编程 通讯编程 游戏编程多媒体linux 外挂编程 程序API图像处理 嵌入式/单片机 数据库编程 控制台 进程与线程 网络安全  汇编语言 硬件编程 软件设计 工程标准规等。其中代写代做编程语言或工具包括但不限于以下范围:

C/C++/C#代写

Java代写

IT代写

Python代写

辅导编程作业

Matlab代写

Haskell代写

Processing代写

Linux环境搭建

Rust代写

Data Structure Assginment 数据结构代写

MIPS代写

Machine Learning 作业 代写

Oracle/SQL/PostgreSQL/Pig 数据库代写/代做/辅导

Web开发、网站开发、网站作业

ASP.NET网站开发

Finance Insurace Statistics统计、回归、迭代

Prolog代写

Computer Computational method代做

 

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codinghelp

代写Haskell程序 汉诺塔、汉诺塔编程代码代写

标签:coding   min   compute   通讯   distance   learning   ram   api   ida   

原文地址:https://www.cnblogs.com/helpcode/p/8933463.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!