题目链接:POJ 1149 PIGS
PIGS
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can‘t unlock any pighouse because he doesn‘t have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day. Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0. Output
The first and only line of the output should contain the number of sold pigs.
Sample Input 3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6 Sample Output 7 Source |
本题关键在如何构图,构好图就可以套模板直接求解了。其实大部分的网络流题目只要能够图就基本简单了。不过构图是个费脑力的过程。
构图方法如下:
(1)设一个源点s、一个汇点t,
(2)将顾客看做中间节点,
(3)s和每个猪圈的第一个顾客连边,容量为开始时猪圈中猪的数目。如果和某个节点有重边,则将容量值合并(因为源点流出的流量就是所有猪圈能提供的猪的数目),
(4)顾客j紧跟在顾客i之后打开某个猪圈,则边<i, j>的容量为INF,因为如果顾客j紧跟顾客i之后打开某个猪圈,那么迈克就有可能根据顾客j的要求将其他猪圈中的猪调整到该猪圈,这样顾客j就能买到尽可能多的猪,
(5)每个顾客和汇点之间连边,边的容量是顾客所希望买的猪的数目。
完成构图后,可以进行最大流的求解了。三种方法
(1)EK算法,最短增广路算法(即先用BFS求增广路,然后再增广,但是每次都要BFS,时间复杂度不好。
实现如下:
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; #define maxn 1010 #define INF 0x3f3f3f3f int ans, s, t, n; int a[maxn], pre[maxn]; int flow[maxn][maxn]; int cap[maxn][maxn]; void EK() { queue<int> q; memset(flow, 0, sizeof(flow)); ans = 0; while(1) { memset(a, 0, sizeof(a)); a[s] = INF; q.push(s); while(!q.empty()) //bfs找增广路径 { int u = q.front(); q.pop(); for(int v = 1; v <= n; v++) if(!a[v] && cap[u][v] > flow[u][v]) { pre[v] = u; q.push(v); a[v] = min(a[u], cap[u][v]-flow[u][v]); } } if(a[t] == 0) break; for(int u = t; u != s; u = pre[u]) //改进网络流 { flow[pre[u]][u] += a[t]; flow[u][pre[u]] -= a[t]; } ans += a[t]; } } int main() { //freopen("poj_1149.txt", "r", stdin); int m, x, A, B, pig[maxn], pre[maxn]; memset(cap, 0, sizeof(cap)); scanf("%d%d", &m, &n); memset(pre, -1, sizeof(pre)); s = 0; t = n+1; for(int i = 1; i <= m; i++) scanf("%d", &pig[i]); for(int i = 1; i <= n; i++) { scanf("%d", &A); for(int j = 0; j < A; j++) { scanf("%d", &x); if(pre[x] == -1) cap[s][i] += pig[x]; else cap[pre[x]][i] = INF; pre[x] = i; } scanf("%d", &cap[i][t]); } n += 2; EK(); printf("%d\n", ans); return 0; }
(2)Dinic算法。与EK同属SAP算法, 利用层次图来找最短路,然后用DFS增广。
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; #define maxn 1010 #define INF 0x3f3f3f3f struct Edge { int from, to, cap; }; vector<Edge> EG; vector<int> G[maxn]; int n, s, t, ans, d[maxn], cur[maxn]; void addEdge(int from, int to, int cap) { EG.push_back((Edge){from, to, cap}); EG.push_back((Edge){to, from, 0}); int x = EG.size(); G[from].push_back(x-2); G[to].push_back(x-1); } bool bfs() { memset(d, -1, sizeof(d)); queue<int> q; q.push(s); d[s] = 0; while(!q.empty()) { int x = q.front(); q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = EG[G[x][i]]; if(d[e.to] == -1 && e.cap > 0) { d[e.to] = d[x]+1; q.push(e.to); } } } return (d[t]!=-1); } int dfs(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = EG[G[x][i]]; if(d[x]+1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) { e.cap -= f; EG[G[x][i]^1].cap += f; flow += f; a -= f; if(a == 0) break; } } return flow; } void Dinic() { ans = 0; while(bfs()) { memset(cur, 0, sizeof(cur)); ans += dfs(s, INF); } } int main() { //freopen("poj_1149.txt", "r", stdin); int m, x, A, B, pig[maxn], pre[maxn]; scanf("%d%d", &m, &n); memset(pre, -1, sizeof(pre)); s = 0; t = n+1; for(int i = 1; i <= m; i++) scanf("%d", &pig[i]); for(int i = 1; i <= n; i++) { scanf("%d", &A); for(int j = 0; j < A; j++) { scanf("%d", &x); if(pre[x] == -1) addEdge(s, i, pig[x]); else addEdge(pre[x], i, INF); pre[x] = i; } scanf("%d", &B); addEdge(i, t, B); } n += 2; Dinic(); printf("%d\n", ans); return 0; }
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; #define maxn 1010 #define INF 0x3f3f3f3f struct Edge { int from, to, cap, flow; }; vector<Edge> EG; vector<int> G[maxn]; int n, s, t, ans, d[maxn], cur[maxn], p[maxn], num[maxn]; bool vis[maxn]; void addEdge(int from, int to, int cap) { EG.push_back((Edge){from, to, cap, 0}); EG.push_back((Edge){to, from, 0, 0}); int x = EG.size(); G[from].push_back(x-2); G[to].push_back(x-1); } void bfs() { memset(vis, false, sizeof(vis)); queue<int> q; vis[t] = true; d[t] = 0; q.push(t); while(!q.empty()) { int x = q.front(); q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = EG[G[x][i]^1]; if(!vis[e.from] && e.cap > e.flow) { vis[e.from] = true; d[e.from] = d[x]+1; q.push(e.from); } } } } int augment() { int x = t, a = INF; while(x != s) { Edge& e = EG[p[x]]; a = min(a, e.cap-e.flow); x = EG[p[x]].from; } x = t; while(x != s) { EG[p[x]].flow += a; EG[p[x]^1].flow -= a; x = EG[p[x]].from; } return a; } void ISAP() { ans =0; bfs(); memset(num, 0, sizeof(num)); for(int i = 0; i < n; i++) num[d[i]]++; int x = s; memset(cur, 0, sizeof(cur)); while(d[s] < n) { if(x == t) { ans += augment(); x = s; } bool flag = false; for(int i = cur[x]; i < G[x].size(); i++) { Edge& e = EG[G[x][i]]; if(e.cap > e.flow && d[x] == d[e.to]+1) { flag = true; p[e.to] = G[x][i]; cur[x] = i; x = e.to; break; } } if(!flag) { int m = n-1; for(int i = 0; i < G[x].size(); i++) { Edge& e = EG[G[x][i]]; if(e.cap > e.flow) m = min(m, d[e.to]); } if(--num[d[x]] == 0) break; num[d[x] = m+1]++; cur[x] = 0; if(x != s) x = EG[p[x]].from; } } } void Clear() { EG.clear(); for(int i = 0; i < n; ++i) G[i].clear(); } int main() { //freopen("poj_1149.txt", "r", stdin); int m, x, A, B, pig[maxn], pre[maxn]; scanf("%d%d", &m, &n); memset(pre, -1, sizeof(pre)); s = 0; t = n+1; for(int i = 1; i <= m; i++) scanf("%d", &pig[i]); for(int i = 1; i <= n; i++) { scanf("%d", &A); for(int j = 0; j < A; j++) { scanf("%d", &x); if(pre[x] == -1) addEdge(s, i, pig[x]); else addEdge(pre[x], i, INF); pre[x] = i; } scanf("%d", &B); addEdge(i, t, B); } n += 2; ISAP(); printf("%d\n", ans); Clear(); return 0; }比较
POJ 1149 PIGS 迈克卖猪问题 网络流构图+三种AC方法
原文地址:http://blog.csdn.net/u011439796/article/details/39532037