码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 1149 PIGS 迈克卖猪问题 网络流构图+三种AC方法

时间:2014-09-25 02:42:58      阅读:333      评论:0      收藏:0      [点我收藏+]

标签:acm   poj   图论   网络流   

题目链接:POJ 1149 PIGS

PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16533   Accepted: 7403

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can‘t unlock any pighouse because he doesn‘t have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source


分析:

本题关键在如何构图,构好图就可以套模板直接求解了。其实大部分的网络流题目只要能够图就基本简单了。不过构图是个费脑力的过程。

构图方法如下:

(1)设一个源点s、一个汇点t,

(2)将顾客看做中间节点,

(3)s和每个猪圈的第一个顾客连边,容量为开始时猪圈中猪的数目。如果和某个节点有重边,则将容量值合并(因为源点流出的流量就是所有猪圈能提供的猪的数目),

(4)顾客j紧跟在顾客i之后打开某个猪圈,则边<i, j>的容量为INF,因为如果顾客j紧跟顾客i之后打开某个猪圈,那么迈克就有可能根据顾客j的要求将其他猪圈中的猪调整到该猪圈,这样顾客j就能买到尽可能多的猪,

(5)每个顾客和汇点之间连边,边的容量是顾客所希望买的猪的数目。

完成构图后,可以进行最大流的求解了。三种方法

(1)EK算法,最短增广路算法(即先用BFS求增广路,然后再增广,但是每次都要BFS,时间复杂度不好。

实现如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;

#define maxn 1010
#define INF 0x3f3f3f3f
int ans, s, t, n;
int a[maxn], pre[maxn];
int flow[maxn][maxn];
int cap[maxn][maxn];

void EK()
{
    queue<int> q;
    memset(flow, 0, sizeof(flow));
    ans = 0;
    while(1)
    {
        memset(a, 0, sizeof(a));
        a[s] = INF;
        q.push(s);
        while(!q.empty())   //bfs找增广路径
        {
            int u = q.front();
            q.pop();
            for(int v = 1; v <= n; v++)
                if(!a[v] && cap[u][v] > flow[u][v])
                {
                    pre[v] = u;
                    q.push(v);
                    a[v] = min(a[u], cap[u][v]-flow[u][v]);
                }
        }
        if(a[t] == 0) break;
        for(int u = t; u != s; u = pre[u])  //改进网络流
        {
            flow[pre[u]][u] += a[t];
            flow[u][pre[u]] -= a[t];
        }
        ans += a[t];
    }
}

int main()
{
    //freopen("poj_1149.txt", "r", stdin);
    int m, x, A, B, pig[maxn], pre[maxn];
    memset(cap, 0, sizeof(cap));
    scanf("%d%d", &m, &n);
    memset(pre, -1, sizeof(pre));
    s = 0; t = n+1;
    for(int i = 1; i <= m; i++)
        scanf("%d", &pig[i]);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d", &A);
        for(int j = 0; j < A; j++)
        {
            scanf("%d", &x);
            if(pre[x] == -1)
                cap[s][i] += pig[x];
            else
                cap[pre[x]][i] = INF;
            pre[x] = i;
        }
        scanf("%d", &cap[i][t]);
    }
    n += 2;
    EK();
    printf("%d\n", ans);
    return 0;
}

(2)Dinic算法。与EK同属SAP算法, 利用层次图来找最短路,然后用DFS增广。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;

#define maxn 1010
#define INF 0x3f3f3f3f

struct Edge
{
    int from, to, cap;
};

vector<Edge> EG;
vector<int> G[maxn];
int n, s, t, ans, d[maxn], cur[maxn];

void addEdge(int from, int to, int cap)
{
    EG.push_back((Edge){from, to, cap});
    EG.push_back((Edge){to, from, 0});
    int x = EG.size();
    G[from].push_back(x-2);
    G[to].push_back(x-1);
}

bool bfs()
{
    memset(d, -1, sizeof(d));
    queue<int> q;
    q.push(s);
    d[s] = 0;
    while(!q.empty())
    {
        int x = q.front();
        q.pop();
        for(int i = 0; i < G[x].size(); i++)
        {
            Edge& e = EG[G[x][i]];
            if(d[e.to] == -1 && e.cap > 0)
            {
                d[e.to] = d[x]+1;
                q.push(e.to);
            }
        }
    }
    return (d[t]!=-1);
}

int dfs(int x, int a)
{
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++)
    {
        Edge& e = EG[G[x][i]];
        if(d[x]+1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0)
        {
            e.cap -= f;
            EG[G[x][i]^1].cap += f;
            flow += f;
            a -= f;
            if(a == 0) break;
        }
    }
    return flow;
}
void Dinic()
{
    ans = 0;
    while(bfs())
    {
        memset(cur, 0, sizeof(cur));
        ans += dfs(s, INF);
    }
}
int main()
{
    //freopen("poj_1149.txt", "r", stdin);
    int m, x, A, B, pig[maxn], pre[maxn];
    scanf("%d%d", &m, &n);
    memset(pre, -1, sizeof(pre));
    s = 0; t = n+1;
    for(int i = 1; i <= m; i++)
        scanf("%d", &pig[i]);
    for(int i = 1; i <= n; i++) {
        scanf("%d", &A);
        for(int j = 0; j < A; j++) {
            scanf("%d", &x);
            if(pre[x] == -1)
                addEdge(s, i, pig[x]);
            else
                addEdge(pre[x], i, INF);
            pre[x] = i;
        }
        scanf("%d", &B);
        addEdge(i, t, B);
    }
    n += 2;
    Dinic();
    printf("%d\n", ans);
    return 0;
}

(3)ISAP,改进ISAP算法,是目前最好算法。也是通过层次网络找最短路,但是反向BFS,且BFS只需要运行一次
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;

#define maxn 1010
#define INF 0x3f3f3f3f

struct Edge
{
    int from, to, cap, flow;
};

vector<Edge> EG;
vector<int> G[maxn];
int n, s, t, ans, d[maxn], cur[maxn], p[maxn], num[maxn];
bool vis[maxn];

void addEdge(int from, int to, int cap)
{
    EG.push_back((Edge){from, to, cap, 0});
    EG.push_back((Edge){to, from, 0, 0});
    int x = EG.size();
    G[from].push_back(x-2);
    G[to].push_back(x-1);
}

void bfs()
{
    memset(vis, false, sizeof(vis));
    queue<int> q;
    vis[t] = true;
    d[t] = 0;
    q.push(t);
    while(!q.empty()) {
        int x = q.front();
        q.pop();
        for(int i = 0; i < G[x].size(); i++) {
            Edge& e = EG[G[x][i]^1];
            if(!vis[e.from] && e.cap > e.flow) {
                vis[e.from] = true;
                d[e.from] = d[x]+1;
                q.push(e.from);
            }
        }
    }
}

int augment()
{
    int x = t, a = INF;
    while(x != s) {
        Edge& e = EG[p[x]];
        a = min(a, e.cap-e.flow);
        x = EG[p[x]].from;
    }
    x = t;
    while(x != s) {
        EG[p[x]].flow += a;
        EG[p[x]^1].flow -= a;
        x = EG[p[x]].from;
    }
    return a;
}
void ISAP()
{
    ans =0;
    bfs();
    memset(num, 0, sizeof(num));
    for(int i = 0; i < n; i++)
        num[d[i]]++;
    int x = s;
    memset(cur, 0, sizeof(cur));
    while(d[s] < n) {
        if(x == t) {
            ans += augment();
            x = s;
        }
        bool flag = false;
        for(int i = cur[x]; i < G[x].size(); i++) {
            Edge& e = EG[G[x][i]];
            if(e.cap > e.flow && d[x] == d[e.to]+1) {
                flag = true;
                p[e.to] = G[x][i];
                cur[x] = i;
                x = e.to;
                break;
            }
        }
        if(!flag) {
            int m = n-1;
            for(int i = 0; i < G[x].size(); i++) {
                Edge& e = EG[G[x][i]];
                if(e.cap > e.flow)
                    m = min(m, d[e.to]);
            }
            if(--num[d[x]] == 0) break;
            num[d[x] = m+1]++;
            cur[x] = 0;
            if(x != s)
                x = EG[p[x]].from;
        }
    }
}
void Clear()
{
    EG.clear();
    for(int i = 0; i < n; ++i)
        G[i].clear();
}
int main()
{
    //freopen("poj_1149.txt", "r", stdin);
    int m, x, A, B, pig[maxn], pre[maxn];
    scanf("%d%d", &m, &n);
        memset(pre, -1, sizeof(pre));
        s = 0; t = n+1;
        for(int i = 1; i <= m; i++)
            scanf("%d", &pig[i]);
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &A);
            for(int j = 0; j < A; j++)
            {
                scanf("%d", &x);
                if(pre[x] == -1)
                    addEdge(s, i, pig[x]);
                else
                    addEdge(pre[x], i, INF);
                pre[x] = i;
            }
            scanf("%d", &B);
            addEdge(i, t, B);
        }
        n += 2;
        ISAP();
        printf("%d\n", ans);
        Clear();
    return 0;
}
比较


POJ 1149 PIGS 迈克卖猪问题 网络流构图+三种AC方法

标签:acm   poj   图论   网络流   

原文地址:http://blog.csdn.net/u011439796/article/details/39532037

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!