标签:style get main void alc 题目 ace pre pos
题目描述:链接点此
这套题的github地址(里面包含了数据,题解,现场排名):点此
Output one line with the answer
5 11 12 13 14 15
360360
题目意思:就是给你n个整数,求相乘的大小。
这题python和java很好过,因为py和java有大数,c++就比较难受了
n=int(input()) ans=1 for i in range(n): b=int(input()) ans=ans*b print(ans)
c++的后来在补
fft代码:超时了,回头再优化
@@ -0,0 +1,109 @@ #include<cmath> #include<cstdio> #include<vector> #include<queue> #include<cstring> #include<iomanip> #include<stdlib.h> #include<iostream> #include<algorithm> #define ll long long #define inf 1000000000 #define mod 1000000007 #define N 350000 #define fo(i,a,b) for(i=a;i<=b;i++) #define fd(i,a,b) for(i=a;i>=b;i--) using namespace std; const double pi = 3.141592653; char s1[N>>1],s2[N>>1]; double rea[N],ina[N],reb[N],inb[N],ret[N],intt[N]; int i,len1,len2,lent,lenres,len; int res[N>>1]; void FFT(double *reA,double *inA,int n,int flag) { if (n == 1) return; int k,u,i; double reWm = cos(2*pi/n) , inWm = sin(2*pi/n);//????? if (flag) inWm = -inWm; double reW = 1.0 , inW = 0.0; for (k = 1,u = 0;k < n; k += 2,u++)//?????????????? {ret[u] = reA[k]; intt[u] = inA[k];} for (k = 2;k < n; k += 2) {reA[k/2] = reA[k]; inA[k/2] = inA[k];} for (k = u,i = 0;k < n && i < u; k++,i++) {reA[k] = ret[i]; inA[k] = intt[i];} FFT(reA,inA,n/2,flag); FFT(reA+n/2,inA+n/2,n/2,flag); fo(k,0,n/2-1)//??? { int tag = n / 2 + k; double reT = reW * reA[tag] - inW * inA[tag]; double inT = reW * inA[tag] + inW * reA[tag]; double reU = reA[k] , inU = inA[k]; reA[k] = reU + reT; inA[k] = inU + inT; reA[tag] = reU - reT; inA[tag] = inU - inT; double reWt = reW * reWm - inW * inWm; double inWt = reW * inWm + inW * reWm; reW = reWt; inW = inWt; } } void mul() { memset(res, 0 , sizeof(res)); memset(rea, 0 , sizeof(rea)); memset(ina, 0 , sizeof(ina)); //memset(reb, 0 , sizeof(reb)); // memset(inb, 0 , sizeof(inb)); len1 = strlen(s1); len2 = strlen(s2); lent = (len1 > len2 ? len1 : len2); len = 1; while (len < lent) len <<= 1; len <<= 1; fo(i,0,len-1) { if (i < len1) rea[i] = (double) s1[len1-i-1] - ‘0‘; if (i < len2) reb[i] = (double) s2[len2-i-1] - ‘0‘; ina[i] = inb[i] = 0.0; } FFT(rea,ina,len,0); FFT(reb,inb,len,0);//???a??b????????? fo(i,0,len-1)//???c????????? { //printf("%.5lf %.5lf\n",rea[i],ina[i]); double rec = rea[i] * reb[i] - ina[i] * inb[i]; double inc = rea[i] * inb[i] + ina[i] * reb[i]; rea[i] = rec; ina[i] = inc; } FFT(rea,ina,len,1);//???c?????????? fo(i,0,len-1) {rea[i] /= len; ina[i] /= len;} fo(i,0,len-1) res[i] = (int)(rea[i] + 0.5); fo(i,0,len-1) res[i+1] += res[i] / 10 , res[i] %= 10; lenres = len1 + len2 + 2; while (res[lenres] == 0 && lenres > 0) lenres--; int kk=0; fd(i,lenres,0) s1[kk++]=res[i]+‘0‘; } int main() { freopen("temin.txt","r",stdin); freopen("temout.txt","w",stdout); int n; scanf("%d",&n); if(n==1) { scanf("%s",s1); printf("%s\n",s1); } else { scanf("%s",s1); for(int i=1;i<n;i++) { scanf("%s",s2); mul(); } printf("%s\n",s1); } return 0; }
H. GSS and Simple Math Problem--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)
标签:style get main void alc 题目 ace pre pos
原文地址:https://www.cnblogs.com/fantastic123/p/8947493.html