码迷,mamicode.com
首页 > 其他好文 > 详细

神经网络入门——15反向传播

时间:2018-04-27 18:07:13      阅读:239      评论:0      收藏:0      [点我收藏+]

标签:cto   reac   cal   NPU   lis   put   http   color   contain   

反向传播

如何让多层神经网络学习呢?我们已了解了使用梯度下降来更新权重,反向传播算法则是它的一个延伸。以一个两层神经网络为例,可以使用链式法则计算输入层-隐藏层间权重的误差。

要使用梯度下降法更新隐藏层的权重,你需要知道各隐藏层节点的误差对最终输出的影响。每层的输出是由两层间的权重决定的,两层之间产生的误差,按权重缩放后在网络中向前传播。既然我们知道输出误差,便可以用权重来反向传播到隐藏层。

例如,输出层每个输出节点 kk 的误差是 \delta^o_kδko? ,隐藏节点 jj 的误差即为输出误差乘以输出层-隐藏层间的权重矩阵(以及梯度)。

 
技术分享图片
 

然后,梯度下降与之前相同,只是用新的误差:

 
技术分享图片
 

其中 w_{ij} 是输入和隐藏层之间的权重, x_i 是输入值。这个形式可以表示任意层数。权重更新步长等于步长乘以层输出误差再乘以该层的输入值。

 
技术分享图片
 

现在,你有了输出误差,\delta_{output},便可以反向传播这些误差了。V_{in} 是该层的输入,比如经过隐藏层激活函数的输出值。

 

范例

以一个简单的两层神经网络为例,计算其权重的更新过程。假设该神经网络包含两个输入值,一个隐藏节点和一个输出节点,隐藏层和输出层的激活函数都是 sigmoid,如下图所示。(注意:图底部的节点为输入值,图顶部的 \hat yy^?为输出值。输入层不计入层数,所以该结构被称为两层神经网络。)

 
技术分享图片
 

技术分享图片

技术分享图片

反向传播练习

接下来你将用代码来实现一次两个权重的反向传播更新。我们提供了正向传播的代码,你来实现反向传播的部分。

要做的事

  • 计算网络输出误差
  • 计算输出层误差项
  • 用反向传播计算隐藏层误差项
  • 计算反向传播误差的权重更新步长
def sigmoid(x):
    """
    Calculate sigmoid
    """
    return 1 / (1 + np.exp(-x))


x = np.array([0.5, 0.1, -0.2])
target = 0.6
learnrate = 0.5

weights_input_hidden = np.array([[0.5, -0.6],
                                 [0.1, -0.2],
                                 [0.1, 0.7]])

weights_hidden_output = np.array([0.1, -0.3])

## Forward pass
hidden_layer_input = np.dot(x, weights_input_hidden)
hidden_layer_output = sigmoid(hidden_layer_input)

output_layer_in = np.dot(hidden_layer_output, weights_hidden_output)
output = sigmoid(output_layer_in)

## Backwards pass
## TODO: Calculate output error
error = target - output

# TODO: Calculate error term for output layer
output_error_term = error * output * (1 - output)

# TODO: Calculate error term for hidden layer
hidden_error_term = np.dot(output_error_term, weights_hidden_output) *                     hidden_layer_output * (1 - hidden_layer_output)

# TODO: Calculate change in weights for hidden layer to output layer
delta_w_h_o = learnrate * output_error_term * hidden_layer_output

# TODO: Calculate change in weights for input layer to hidden layer
delta_w_i_h = learnrate * hidden_error_term * x[:, None]

print(Change in weights for hidden layer to output layer:)
print(delta_w_h_o)
print(Change in weights for input layer to hidden layer:)
print(delta_w_i_h)

 

 

神经网络入门——15反向传播

标签:cto   reac   cal   NPU   lis   put   http   color   contain   

原文地址:https://www.cnblogs.com/fuhang/p/8963375.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!