标签:void clu 题解 质因数 put puts #define include 题目
输入两个正整数a和b,求ab的因子和。结果太大,只要输出它对9901的余数。
仅一行,为两个正整数a和b(0≤a,b≤50000000)。
a^b的因子和对9901的余数。
2 3
15
根据约数和定理: 若\[n = \prod_{i = 1}^k = p_1^{a_1}\times p_2^{a_2} \times p_3^{a_3} \times \cdots \times p_k^{a_k}(其中p_i为n的质因数,a_i为正整数)\]
则\(n\)的所有正约数之和为\[f(n) = \prod_{i = 1}^k(\sum_{j = 0}^{a_i}p^j) \\=(1 + p_1 + p_1 ^ 2 + p_1^3+\cdots+ p_1^{a1}) \times(1 + p_2 + p_2^2+p_2^3+\cdots+p_2^{a_2})\times \dots \times (1 + p_k + p_k^2+p_k^3+\cdots + p_k^{a_k}\]
设\(S = 1 + p_k + p_k^2+p_k^3+\cdots + p_k^{a_k}\) 则\(p_kS = p_k + p_k^2+p_k^3+\cdots + p_k^{a_k}+p_k^{a_k+1}\)
后面的式子减前面的式子得:\((p_k - 1)S = p_k^{a_k+1} - 1\)即\[S = \frac{p_k^{a_k+1} - 1}{p_k - 1}\]
最后通过逆元+快速幂计算即可
#include<bits/stdc++.h>
#define gc getchar
#define ll long long
inline ll read(){ll x = 0; char ch = gc(); bool positive = 1;for (; !isdigit(ch);
ch = gc()) if (ch == ‘-‘) positive = 0;for (; isdigit(ch); ch = gc()) x = x * 10
+ ch - ‘0‘;return positive ? x : -x;}inline void write(ll a){if(a>=10)write(a/10);
putchar(‘0‘+a%10);}inline void writeln(ll a){if(a<0){a=-a; putchar(‘-‘);}write(a);
puts("");}
using namespace std;
const int N = 10000, p = 9901;
ll num[N], cnt[N], tot;
inline ll ksm(ll a, ll b) {
ll res = 1;
for(; b; b >>= 1, a = a * a % p)
if(b & 1)
res = res * a % p;
return res;
}
int main() {
ll x, a, b, y, ans = 1;
x = read(), y = read();
for(ll i = 2; i <= x; ++i)
if(x % i == 0) {
num[++tot] = i;
while(x % i == 0) {
++cnt[tot];
x /= i;
}
cnt[tot] *= y;
}
for(int i = 1; i <= tot; ++i) {
a = ksm(num[i], cnt[i] + 1) - 1;
b = ksm(num[i] - 1, p - 2);
ans = ans * a * b % p;
}
writeln((ans + p ) % p);
return 0;
}
标签:void clu 题解 质因数 put puts #define include 题目
原文地址:https://www.cnblogs.com/kcfzyhq/p/8963779.html