标签:规范 rda play 控制器 mit 总线 时间 title 分享
STM32 的 USART 简介
通用同步异步收发器(Universal Synchronous Asynchronous Receiver and Transmitter)是一个串行通信设备,可以灵活地与外部设备进行全双工数据交换。有别于 USART 还有一个 UART(Universal Asynchronous Receiver and Transmitter),它是在 USART 基础上裁剪掉了同步通信功能,只有异步通信。简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是 UART。
串行通信一般是以帧格式传输数据,即是一帧一帧的传输,每帧包含有起始信号、数据信息、停止信息,可能还有校验信息。USART 就是对这些传输参数有具体规定,当然也不是只有唯一一个参数值,很多参数值都可以自定义设置,只是增强它的兼容性。 USART 满足外部设备对工业标准 NRZ 异步串行数据格式的要求,并且使用了小数波特率发生器,可以提供多种波特率,使得它的应用更加广泛。USART 支持同步单向通信和半双工单线通信;还支持局域互连网络 LIN、智能卡(SmartCard)协议与 lrDA(红外线数据协会) SIR ENDEC 规范。
USART 支持使用 DMA,可实现高速数据通信。
USART 在 STM32 应用最多莫过于“打印”程序信息,一般在硬件设计时都会预留一个 USART 通信接口连接电脑,用于在调试程序是可以把一些调试信息“打印”在电脑端的串口调试助手工具上,从而了解程序运行是否正确、如果出错哪具体哪里出错等等。
USART 功能框图
1. 功能引脚
TX:发送数据输出引脚。
RX:接收数据输入引脚。
SW_RX:数据接收引脚,只用于单线和智能卡模式,属于内部引脚,没有具体外部引脚。
nRTS:请求以发送(Request To Send),n 表示低电平有效。如果使能 RTS 流控制,当 USART 接收器准备好接收新数据时就会将 nRTS 变成低电平;当接收寄存器已满时, nRTS 将被设置为高电平。该引脚只适用于硬件流控制。
nCTS:清除以发送(Clear To Send),n 表示低电平有效。如果使能 CTS 流控制,发送器在发送下一帧数据之前会检测 nCTS 引脚,如果为低电平,表示可以发送数据,如果为高电平则在发送完当前数据帧之后停止发送。该引脚只适用于硬件流控制。
SCLK:发送器时钟输出引脚。这个引脚仅适用于同步模式。
(此表可在STM32F10x-中文数据手册的STM32F103xx引脚定义这里.)
STM32F103RCT6 系统控制器有三个 USART 和两个 UART,其中 USART1 和时钟来源于 APB2 总线时钟,其最大频率为72MHz,其他四个的时钟来源于 APB1 总线时钟,其最大频率为 36MHz。UART 只是异步传输功能,所以没有 SCLK、nCTS 和 nRTS 功能引脚。
2. 数据寄存器
USART 数据寄存器(USART_DR)只有低 9 位有效,并且第 9 位数据是否有效要取决于 USART 控制寄存器 1(USART_CR1)的 M 位设置,当 M 位为 0 时表示 8 位数据字长,当 M 位为 1 表示 9 位数据字长,我们一般使用 8 位数据字长。
USART_DR 包含了已发送的数据或者接收到的数据。USART_DR 实际是包含了两个寄存器,一个专门用于发送的可写 TDR,一个专门用于接收的可读 RDR。当进行发送操作时,往 USART_DR 写入数据会自动存储在 TDR 内;当进行读取操作时,向 USART_DR 读取数据会自动提取 RDR 数据。
TDR 和 RDR 都是介于系统总线和移位寄存器之间。串行通信是一个位一个位传输的,发送时把 TDR 内容转移到发送移位寄存器,然后把移位寄存器数据每一位发送出去,接收时把接收到的每一位顺序保存在接收移位寄存器内然后才转移到 RDR。 USART 支持 DMA 传输,可以实现高速数据传输.
3. 控制器
USART 有专门控制发送的发送器、控制接收的接收器,还有唤醒单元、中断控制等等。使用 USART 之前需要向 USART_CR1 寄存器的 UE 位置 1 使能 USART,UE 位用来开启供给给串口的时钟。发送或者接收数据字长可选 8 位或 9 位,由 USART_CR1 的 M 位控制.(1个总开关UE; 两个小开关TE,RE; 一个位数控制为M,决定是否有校验码)
发送器
当 USART_CR1 寄存器的发送使能位 TE 置 1 时,启动数据发送,发送移位寄存器的数据会在 TX 引脚输出,低位在前,高位在后。如果是同步模式 SCLK 也输出时钟信号。
一个字符帧发送需要三个部分:起始位+数据帧+停止位。起始位是一个位周期的低电平,位周期就是每一位占用的时间;数据帧就是我们要发送的 8 位或 9 位数据,数据是从最低位开始传输的;停止位是一定时间周期的高电平。停止位时间长短是可以通过 USART 控制寄存器 2(USART_CR2)的 STOP[1:0]位控制,可选 0.5 个、1 个、1.5 个和 2 个停止位。默认使用 1 个停止位。2 个停止位适用于正常 USART 模式、单线模式和调制解调器模式。0.5 个和 1.5 个停止位用于智能卡模式.
当选择 8 位字长,使用 1 个停止位时,具体发送字符时序图见图 。
过程:当发送使能位 TE 置 1 之后,发送器开始会先发送一个空闲帧(一个数据帧长度的高电平),接下来就可以往 USART_DR 寄存器写入要发送的数据。在写入最后一个数据后,需要等待 USART 状态寄存器(USART_SR)的 TC 位为 1,表示数据传输完成,如果 USART_CR1 寄存器的 TCIE 位置 1,将产生中断。
在发送数据时,编程的时候有几个比较重要的标志位我们来总结下。
接收器
如果将 USART_CR1 寄存器的 RE 位置 1,使能 USART 接收,使得接收器在 RX 线开始搜索起始位。在确定到起始位后就根据 RX 线电平状态把数据存放在接收移位寄存器内。接收完成后就把接收移位寄存器数据移到 RDR 内,并把 USART_SR 寄存器的 RXNE 位置 1,同时如果 USART_CR2 寄存器的 RXNEIE 置 1 的话可以产生中断。
在接收数据时,编程的时候有几个比较重要的标志位我们来总结下。
4. 小数波特率生成
波特率指数据信号对载波的调制速率,它用单位时间内载波调制状态改变次数来表示,单位为波特。比特率指单位时间内传输的比特数,单位 bit/s(bps)。对于 USART 波特率与比特率相等,以后不区分这两个概念。波特率越大,传输速率越快。
USART 的发送器和接收器使用相同的波特率。计算公式如下:
其中,fPLCK 为 USART 时钟,(注意挂载的总线不同72 36M) USARTDIV 是一个存放在波特率寄存器(USART_BRR) 的 一个 无符 号定 点数。 其中 DIV_Mantissa[11:0] 位 定义 USARTDIV 的 整数 部分 , DIV_Fraction[3:0]位定义 USARTDIV 的小数部分。
例如:DIV_Mantissa=24(0x18),DIV_Fraction=10(0x0A),此时 USART_BRR 值为 0x18A;那么 USARTDIV 的小数位 10/16=0.625(1111为2^4,每个刻度为1/16);整数位 24,最终 USARTDIV 的值为 24.625。
如果知道 USARTDIV 值为 27.68,那么 DIV_Fraction=16*0.68=10.88,最接近的正整数为 11,所以 DIV_Fraction[3:0]为 0xB;DIV_Mantissa=整数(27.68)=27,即为 0x1B。
波特率的常用值有 2400、9600、19200、115200。下面以实例讲解如何设定寄存器值得到波特率的值。
我们知道 USART1 使用 APB2 总线时钟,最高可达 72MHz,其他 USART 的最高频率为 36MHz。我们选取 USART1 作为实例讲解,即 fPLCK=72MHz。为得到 115200bps 的波特率,此时:
解得USARTDIV=39.0625 , 可 算 得 DIV_Fraction=0.0625*16=1=0x01 , DIV_Mantissa=39=0x27,即应该设置USART_BRR 的值为 0x271。
5. 校验控制
STM32F103 系列控制器 USART 支持奇偶校验。当使用校验位时,串口传输的长度将是 8 位的数据帧加上 1 位的校验位总共 9 位,此时 USART_CR1 寄存器的 M 位需要设置为 1,即 9 数据位。将 USART_CR1 寄存器的 PCE 位置 1 就可以启动奇偶校验控制,奇偶校验由硬件自动完成。启动了奇偶校验控制之后,在发送数据帧时会自动添加校验位,接收数据时自动验证校验位。接收数据时如果出现奇偶校验位验证失败,会见 USART_SR 寄存器的 PE 位置 1,并可以产生奇偶校验中断。使能了奇偶校验控制后,每个字符帧的格式将变成:起始位+数据帧+校验位+停止位。
6. 中断控制
USART 有多个中断请求事件,具体见表 。
标签:规范 rda play 控制器 mit 总线 时间 title 分享
原文地址:https://www.cnblogs.com/wenshinlee/p/8970528.html