标签:key 代码 uil 最小 == UI size code lse
!阅读须知||阅读本博文前笔者认为读者已经学会(或了解)了:
1.基础语言与算法
2.标准二分法(二分思想)
3.二分查找
二分答案与二分查找类似,即对有着单调性的答案进行二分,大多数情况下用于求解满足某种条件下的最大(小)值。
答案的单调性大多数情况下可以转化为一个函数,其单调性证明多种多样,如下:
为了保证解在二分搜索的区间里,故不同的问题有着不同(但相似)的写法,读者可以画一个区间模拟一下~
int binary()
{
int l = 0, r = ll, mid;
while(l < r)
{
mid = (l + r) >> 1;
if(check(mid)) r = mid; //大多数题只要改改check()即可
else l = mid + 1;
}
return l;
}
int binary()
{
int l = 0, r = ll, mid;
while(l < r)
{
mid = (l + r + 1) >> 1;
if(check(mid)) r = mid - 1;
else l = mid;
}
return l;
}
int binary(int n)
{
int l = 1, r = maxn, ans = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(c[mid] > a[n]) ans = mid, l = mid + 1; //判断条件与ans记录位置因题而异
else r = mid - 1;
}
return ans;
}
标签:key 代码 uil 最小 == UI size code lse
原文地址:https://www.cnblogs.com/fzl194/p/8971343.html