码迷,mamicode.com
首页 > 其他好文 > 详细

pynlpir + pandas 文本分析

时间:2018-04-30 15:42:14      阅读:697      评论:0      收藏:0      [点我收藏+]

标签:lenovo   set   pos   ttf   单行   cte   分词   src   com   

导入包:

import pynlpir
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import multiprocessing,threading,time

读入初始文本、停用词文件,创建保存初始分词数据的Dataframe

f_1 = open(r"C:\Users\lenovo\Desktop\肖老师爬虫项目\停用词.txt", "r")
stopwords = f_1.read().splitlines()
f_1.close()
f = open(r"C:\Users\lenovo\Desktop\肖老师爬虫项目\data_3.txt", "r")
pd_root = pd.DataFrame(columns=[‘词汇‘, ‘词性‘])

一些参数:

time_start = time.time()  #用于既是计时
pynlpir.open()
font = FontProperties(fname=r‘c:\windows\fonts\simhei.ttf‘, size=13)  #设置画图时的字体
过滤停用词函数:
def stopword_delete(df):
    global stopwords
    for i in range(df.shape[0]):
        if (df.词汇[i] in stopwords):
            df.drop(i,inplace=True)
        else:
            pass
    return df

由于文件里文本内容比较多,直接读取、分词、过滤会比较慢,采用多线程按行读取并处理

单行处理函数:

def line_deal(line):
    global pd_root
    line = line.replace(" ", "")
    segment = pynlpir.segment(line, pos_names=‘parent‘, pos_english=False)  #对单行分词
    pd_line = pd.DataFrame(segment,columns=[‘词汇‘,‘词性‘])  #单行datafrrame
    pd_line = stopword_delete(pd_line)  #过滤停用词
    pd_root = pd_root.append(pd_line,ignore_index=True)

使用多线程读取:

threads_list = []   #线程列表
thread_max = 30  #最大线程
n=0
for line in f:
    p = threading.Thread(target=line_deal,args=(line,))
    threads_list.append(p)
    p.start()
    n=n+1
    print(len(threads_list),n)  #打印当前线程数和读取到的行数
    for pro in threads_list:
        if pro.is_alive() == True:
            continue
        else:
            threads_list.remove(pro)
    if len(threads_list) >= thread_max:
        time.sleep(0.1)
    else:
        continue
f.close() #读取完后关闭文件

打印最初分词后的数据:

print(pd_root.head(10))

技术分享图片

创建词汇-频数库:

pd_word_num = pd.DataFrame(pd_root[‘词汇‘].value_counts())
pd_word_num.rename(columns={‘词汇‘: ‘频数‘})
pd_word_num.rename(columns={‘词汇‘:‘频数‘},inplace=True)
pd_word_num[‘百分比‘] = pd_word_num[‘频数‘] / pd_word_num[‘频数‘].sum()
print(pd_word_num.head(10))

 技术分享图片

创建词性-频数库:

pd_qua_num = pd.DataFrame(pd_root[‘词性‘].value_counts())
#更改列名
pd_qua_num.rename(columns={‘词性‘:‘频数‘},inplace=True)
#添加百分比列:词性-频数-百分比
pd_qua_num[‘百分比‘] = pd_qua_num[‘频数‘] / pd_qua_num[‘频数‘].sum()
print(pd_qua_num.head(10))

技术分享图片

统计几种重要词性的词汇分布:

# 定义6类词性统计数据框
columns_selected=[‘动词‘,‘动词计数‘,‘名词‘,‘名词计数‘,‘代词‘,‘代词计数‘,
                  ‘时间词‘,‘时间词计数‘,‘副词‘,‘副词计数‘,‘形容词‘,‘形容词计数‘]
pd_Top6 = pd.DataFrame(columns=columns_selected)
for i in range(0,12,2):
    pd_Top6[columns_selected[i]] = pd_root.loc[pd_root[‘词性‘]==columns_selected[i]][‘词汇‘].value_counts().reset_index()[‘index‘]
    pd_Top6[columns_selected[i+1]] = pd_root.loc[pd_root[‘词性‘]==columns_selected[i]][‘词汇‘].value_counts().reset_index()[‘词汇‘]
print(pd_Top6.head(10))

技术分享图片

提取文本中关键词:

key_words = pynlpir.get_key_words(str, weighted=True)
print(key_words)

绘图:

 

def paint(df,x,y,title):
    plt.subplots(figsize=(7,5))
    plt.yticks(fontproperties=font,size=10)
    plt.xlabel(x,fontproperties=font,size=10)
    plt.ylabel(y,fontproperties=font,size=10)
    plt.title(title,fontproperties=font)
    df.iloc[:10][‘频数‘].plot(kind=‘barh‘)
    plt.show()

paint(pd_word_num,"频数","词汇","词汇分布")
paint(pd_qua_num,"频数","词性","词性分布")

 技术分享图片

技术分享图片

fig = plt.figure(figsize=(10,5))
fig.subplots_adjust(hspace=0.3,wspace=0.2)
for i in range(1,7):
    pd_qua = pd_Top6.iloc[:,[(2*i-2),2*i-1]]
    pd_qua.columns = [pd_qua.columns[0],‘频数‘]
    pd_qua = pd_qua.set_index(pd_qua.columns[0])
    print(pd_qua)
    ax = fig.add_subplot(2,3,i)
    pd_qua.head(10)[‘频数‘].plot(kind=‘bar‘)
    ax.set_xticklabels(pd_qua.head(10).index,fontproperties=font,size=10,rotation=30)
    ax.set_title(pd_qua.index.name,fontproperties=font)
fig.tight_layout()
fig.show()

  

技术分享图片

 

pynlpir + pandas 文本分析

标签:lenovo   set   pos   ttf   单行   cte   分词   src   com   

原文地址:https://www.cnblogs.com/panda-blog/p/8967284.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!