码迷,mamicode.com
首页 > 其他好文 > 详细

How to get gradients with respect to the inputs in pytorch

时间:2018-04-30 22:15:26      阅读:172      评论:0      收藏:0      [点我收藏+]

标签:nis   module   roc   tor   2.4   from   net   imp   elf   

This is one way to find adversarial examples of CNN.

The boilerplate:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import numpy as np

  Define a simple network:

class lolnet(nn.Module):
    def __init__(self):
        super(lolnet,self).__init__()
        self.a=nn.Linear(in_features=1,out_features=1,bias=False)
        self.a.weight = nn.Parameter(torch.FloatTensor([[0.6]]))
        self.b=nn.Linear(in_features=1,out_features=1,bias=False)
        self.b.weight=nn.Parameter(torch.FloatTensor([[0.6]]))
        self.a.requires_grad=False
        self.b.requires_grad=False
    def forward(self, inputs):
        return self.b(
            self.a(inputs)
        )

  The inputs

inputs=np.array([[5]])
inputs=torch.from_numpy(inputs).float()
inputs=Variable(inputs)
inputs.requires_grad=True
net=lolnet()

  The optimizer

opx=optim.SGD(
    params=[
        {"params":inputs}
    ],lr=0.5
)

  The optimization process

for i in range(50):
    x=net(inputs)
    loss=(x-1)**2
    opx.zero_grad() 
    loss.backward()
    opx.step()
    print(net.a.weight.data.numpy()[0][0],inputs.data.numpy()[0][0],loss.data.numpy()[0][0])

  The results are as below:

0.6 4.712 0.6400001
0.6 4.4613247 0.4848616
0.6 4.243137 0.36732942
0.6 4.0532265 0.27828723
0.6 3.8879282 0.2108294
0.6 3.7440526 0.15972354
0.6 3.6188233 0.1210059
0.6 3.5098238 0.09167358
0.6 3.4149506 0.069451585
0.6 3.332373 0.052616227
0.6 3.2604973 0.039861854
0.6 3.1979368 0.030199187
0.6 3.143484 0.022878764
0.6 3.0960886 0.017332876
0.6 3.0548356 0.013131317
0.6 3.0189288 0.00994824
0.6 2.9876754 0.0075367615
0.6 2.9604726 0.005709796
0.6 2.9367952 0.0043257284
0.6 2.9161866 0.003277142
0.6 2.8982487 0.0024827516
0.6 2.8826356 0.0018809267
0.6 2.869046 0.001424982
0.6 2.8572176 0.0010795629
0.6 2.8469222 0.0008178701
0.6 2.837961 0.00061961624
0.6 2.830161 0.00046941772
0.6 2.8233721 0.000355627
0.6 2.8174632 0.0002694209
0.6 2.81232 0.00020411481
0.6 2.8078432 0.0001546371
0.6 2.8039467 0.00011715048
0.6 2.8005552 8.875507e-05
0.6 2.7976031 6.724081e-05
0.6 2.7950337 5.093933e-05
0.6 2.7927973 3.8591857e-05
0.6 2.7908509 2.9236677e-05
0.6 2.7891567 2.2150038e-05
0.6 2.7876818 1.6781378e-05
0.6 2.7863982 1.2713146e-05
0.6 2.785281 9.631679e-06
0.6 2.7843084 7.296927e-06
0.6 2.783462 5.527976e-06
0.6 2.7827253 4.1880226e-06
0.6 2.782084 3.1727632e-06
0.6 2.7815259 2.4034823e-06
0.6 2.78104 1.821013e-06
0.6 2.7806172 1.3793326e-06
0.6 2.780249 1.044933e-06
0.6 2.7799287 7.9170513e-07

Process finished with exit code 0

  

How to get gradients with respect to the inputs in pytorch

标签:nis   module   roc   tor   2.4   from   net   imp   elf   

原文地址:https://www.cnblogs.com/cxxszz/p/8974640.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!