标签:方法 == lld 错位 生日 需要 旋转 循环 移动
我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一
个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。但是在她生日的前一天,我的室友突
然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有
装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,
但是由于上面 装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差
异值最小。在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号 1,2,…,n,
其中 n 为每个手环的装饰物个数,第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手 环的 i 号位置装饰物
亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释): \sum_{i=1}^{n}(x_i-y_i)^2麻烦你帮他
计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小, 这个最小值是多少呢?
输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始 亮度小于等于m。
接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时 针方向上各装饰物的亮度。
1≤n≤50000, 1≤m≤100, 1≤ai≤m
输出一个数,表示两个手环能产生的最小差异值。
注意在将手环改造之后,装饰物的亮度 可以大于 m。
5 6
1 2 3 4 5
6 3 3 4 5
1
【样例解释】
需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6 旋转一下第二个手环。对于该样例,是将第
二个手环的亮度6 3 3 4 5向左循环移动 2017-04-15 第 6 页,共 6 页 一个位置,使得第二手环的最终的亮度为
:3 3 4 5 6。 此时两个手环的亮度差异值为1。
我们设\(d_i = x_i + y_i\)
那么差异值为:
\[
\begin{aligned}
&=\sum\limits_{i = 1}^{n} (d_i + r)^2 \&=\sum\limits_{i = 1}^{n}(d_i^2 + r^2 + 2d_ir) \&=\sum\limits_{i = 1}^{n} d_i^2 + nr^2 + 2r\sum\limits_{i = 1}^{n} d_i \\end{aligned}
\]
后边可以直接确定,是二次函数最小值点
我们只需最小化
\[\sum\limits_{i = 1}^{n} d_i^2\]
如果我们将\(y\)倍长,对于一种错位关系,\(x_i与y_i\)的差为定值
我们实际求
\[min\{ \sum\limits_{j - i = k} x_i * y_j\} \qquad k \in [0,n - 1]\]
我们令\(t_i = x_{n - i + 1}\)
那么就是求
\[min\{ \sum\limits_{j + i= n + 1 + k} t_i * y_j\} \qquad k \in [0,n - 1]\]
说白了就是将\(x\)翻转
然后NTT即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 998244353;
LL A[maxn],B[maxn],L,R[maxn],n,m;
LL qpow(LL a,LL b){
LL ans = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
void NTT(LL* a,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
LL gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
LL g = 1,x,y;
for (int k = 0; k < i; k++,g = g * gn % P){
x = a[j + k]; y = g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
LL N,a[maxn],b[maxn],sum;
LL ans = 0;
int main(){
N = read(); read();
REP(i,N) sum += (a[i] = read());
REP(i,N) sum -= (b[i] = read());
LL r = -sum / N;
ans = INF;
ans = min(ans,N * (r - 1) * (r - 1) + 2 * sum * (r - 1));
ans = min(ans,N * r * r + 2 * sum * r);
ans = min(ans,N * (r + 1) * (r + 1) + 2 * sum * (r + 1));
REP(i,N) ans += a[i] * a[i] + b[i] * b[i];
REP(i,N) A[i] = a[N - i + 1],B[i] = B[N + i] = b[i];
m = 3 * N; L = 0;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(A,1); NTT(B,1);
for (int i = 0; i < n; i++) A[i] = A[i] * B[i] % P;
NTT(A,-1);
LL tmp = 0;
for (int i = N + 1; i <= N + N; i++) tmp = max(tmp,A[i]);
ans -= 2 * tmp;
printf("%lld\n",ans);
return 0;
}
luogu3723 [AH2017/HNOI2017]礼物 【NTT】
标签:方法 == lld 错位 生日 需要 旋转 循环 移动
原文地址:https://www.cnblogs.com/Mychael/p/8976897.html