标签:缓冲区 而且 技术分享 传输过程 热启动 直接 目标 快速 会议
说到 TCP 建立连接,相信大多数人脑海里肯定可以浮现出一个词,没错就是--“三次握手”。TCP 通过“三次握手”来建立连接,再通过“四次挥手”断开一个连接。在每次挥手中 TCP 做了哪些操作呢?
流程如下图所示(TCP的三次握手和四次挥手):
上图就从客户端和服务端的角度,清楚的展示了 TCP 的三次握手和四次挥手。可以看到,当 TCP 试图建立连接时,三次握手指的是客户端主动触发了两次,服务端触发了一次。
我们可以先明确一下 TCP 建立连接并且初始化的目标是什么呢?
所以三次握手的次序是这样子的:
其中的 2 、3 步骤可以简化为一步,也就是说将 ACK 确认包和 SYN 序列化包一同发送给 Client 端。到此我们就比较简单的解释了 TCP 建立连接的“三次握手”。
我们都知道 TCP 是 面向连接的、 可靠的、 有序的 字节流的 传输层协议,而 UDP 是面向数据报的、不可靠的、无序的传输协议,所以 UDP 压根不会建立什么连接。
就好比发短信一样,UDP 只需要知道对方的 ip 地址,将数据报一份一份的发送过去就可以了,其他的作为发送方,都不需要关心。
(关于TCP的3次握手和4次挥手文章,可详见《理论经典:TCP协议的3次握手与4次挥手过程详解》、《理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程》)
关于 TCP、UDP 之间数据发送的差异,可以体现二者最大的不同之处:
但是由于缓冲区有大小限制,所以你如果用 TCP 发送一段很大的数据,可能会截断成好几段,接收方依次的接收。
那么每次 UDP 发送的数据报大小由哪些因素共同决定呢?!!!!!!!!!!!!important
先来看第一个因素,UDP 本身协议的报文长度为 2^16 - 1,UDP 包头占 8 个字节,IP 协议本身封装后包头占 20 个字节,所以最终长度为: 2^16 - 1 - 20 - 8 = 65507 字节。
只看第一个因素有点理想化了,因为 UDP 属于不可靠协议,我们应该尽量避免在传输过程中,数据包被分割。所以这里有一个非常重要的概念 MTU -- 也就是最大传输单元。
在 Internet 下 MTU 的值为 576 字节,所以在 internet 下使用 UDP 协议,每个数据报最大的字节数为: 576 - 20 - 8 = 548
(有关UDP协议的最大包长限制,详见《UDP中一个包的大小最大能多大?》)
我们再来谈谈数据的有序性。
对于 TCP 来说,本身 TCP 有着超时重传、错误重传、还有等等一系列复杂的算法保证了 TCP 的数据是有序的,
假设你发送了数据 1、2、3,则只要发送端和接收端保持连接时,接收端收到的数据始终都是 1、2、3。
而 UDP 协议则要奔放的多,无论 server 端无论缓冲池的大小有多大,接收 client 端发来的消息总是一个一个的接收。
并且由于 UDP 本身的不可靠性以及无序性,如果 client 发送了 1、2、3 这三个数据报过来,server 端接收到的可能是任意顺序、任意个数三个数据报的排列组合。
其实大家都知道 TCP 本身是可靠的协议,而 UDP 是不可靠的协议。
TCP 内部的很多算法机制让他保持连接的过程中是很可靠的。比如:TCP 的超时重传、错误重传、TCP 的流量控制、阻塞控制、慢热启动算法、拥塞避免算法、快速恢复算法 等等。
所以 TCP 是一个内部原理复杂,但是使用起来比较简单的这么一个协议。
UDP 是一个面向非连接的协议,UDP 发送的每个数据报带有自己的 IP 地址和接收方的 IP 地址,它本身对这个数据报是否出错,是否到达不关心,只要发出去了就好了。
所以来研究下,什么情况会导致 UDP 丢包:
在文章最后的一部分,聊聊 TCP、UDP 使用场景。
先来说 UDP 的吧,有很多人都会觉得 UDP 与 TCP 相比,在性能速度上是占优势的。因为 UDP 并不用保持一个持续的连接,也不需要对收发包进行确认。
但事实上经过这么多年的发展 TCP 已经拥有足够多的算法和优化,在网络状态不错的情况下,TCP 的整体性能是优于 UDP 的。
那在什么时候我们非用 UDP 不可呢?
以上我们说了 UDP 的使用场景,在此之外的其他情况,使用 TCP 准没错。
标签:缓冲区 而且 技术分享 传输过程 热启动 直接 目标 快速 会议
原文地址:https://www.cnblogs.com/zhangkele/p/8984709.html